Outline for April 20, 2000

- 1. Greetings and felicitations!
 - a. Office hours this week after today: W4-5, Th2-3
- 2. Chinese Wall Policy
 - a. Arises as legal defense to insider trading on London stock exchange
 - b. Low-level entities are objects; all objects concerning the same corporation form a CD (company dataset); CDs whose corporations are in competition are grouped into COIs (Conflict of Interest classes)
 - c. Intuitive goal: keep one subject from reading different CDs in the same COI, or reading one CD and writing to another in same COI
 - d. Simple Security Property: Read access granted if the object (a) is in the same CD as an object already accessed by the subject, or (b) is in a CD in an entirely different COI. Assumes correct initialization
 - e. Theorems: (1) Once a subject has accessed an object, only other objects in that CD are available within that COI; (2) subject has access to at most 1 dataset in each COI class
 - f. Exceptions: sanitized information
 - g. * Property: Write access is permitted only if (a) read access is permitted by the simple security property; and (b) no object in a different CD in that COI can be read, unless it contains sanitized information
 - h. Comparison to BLP: (1) ability to track history; (2) in CW, subjects choose which objects they can access but not in BLP; (3) CW requires both mandatory and discretionary parts, BLP is mandatory only.

3. ORCON

- a. Originator controls distribution
- b. DAC, MAC inadequate
- c. Solution is combination
- 4. Role-based Access Control (RBAC)
 - a. Definition of role
 - b. Partitioning as job function
 - c. Discuss Data General model
- 5. Secure vs. Precise
 - a. Confidentiality only
 - b. Assume: output of a function encodes all available information about inputs (such as resource usage, etc.)
 - c. Protection mechanism: given function p, it's a function m such that either m = p for a given set of inputs, or m produces an error message
 - d. Confidentiality policy: function which checks that the particular inputs are in the authorized set of inputs
 - e. Security: *m* is secure iff there is an *m*' such that, for all inputs, m = m'(c(...)), *i.e.*, *m*'s values consistent with stated confidentiality policy
 - f. Precision: m_1, m_2 distinct protection mechanisms. m_1 as precise as m_2 if, for all inputs, $m_1 = p$ implies $m_2 = p$. m_1 is more precise if there is an input such that $m_1 = p$ and $m_2 \neq p$ on that input.
 - g. Union: $m_1 \cup m_2 = m_3$, where $m_3 = p$ iff $m_1 = p$ and $m_2 = p$; otherwise, $m_3 = m_1$.
 - h. ICBS: Let m_1, m_2 besecure protection mechanisms for a program p and policy c. Then $m_1 \cup m_2$ is also a secure protection mechanism for p and c. Further, $m_1 \cup m_2$ is more precise than either m_1 or m_2 .
 - i. Generalizing: for any program p and security policy c, there exists a precise, secure mechanism m^* such that, for all secure mechanisms m associated with p and c, m^* is more precise than m.
 - j. BUT: there is no effective procedure that determines a maximally precise, secure mechanism for a policy and program.