Outline for April 5, 2006

Reading: text, §3.1—3.3.2

- 1. Greetings and felicitations!
- 2. What is the safety question?
 - a. An unauthorized state is one in which a generic right r could be leaked into an entry in the ACM that did not previously contain r. An initial state is safe for r if it cannot lead to a state in which r could be leaked.
 - b. Question: in a given arbitrary protection system, is safety decidable?
 - c. Theorem: there is an algorithm that decides whether a given mono-operational system and initial state is safe for a given generic right.
- 3. General case: It is undecidable whether a given state of a given protection system is safe for a given generic right.
 - a. Represent TM as ACM
 - b. Reduce halting problem to it
- 4. Take-Grant
 - a. Counterpoint to HRU result
 - b. Symmetry of take and grant rights
 - c. Islands (maximal subject-only tg-connected subgraphs)
 - d. Bridges (as a combination of terminal and initial spans)

Sharing

- a. Definition: can• $share(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs G_0 , ..., G_n such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled r
- b. Theorem: can-share $(r, \mathbf{x}, \mathbf{y}, G_0)$ iff there is an edge from \mathbf{x} to \mathbf{y} labelled r in G_0 , or all of the following hold:
 - i. there is a vertex y' with an edge from y' to y labeled r;
 - ii. there is a subject y'' which terminally spans to y', or y'' = y';
 - iii. there is a subject x' which initially spans to x, or x' = x; and
 - iv. there is a sequence of islands $I_1, ..., I_n$ connected by bridges for which $\mathbf{x'}$ is in I_1 and $\mathbf{y'}$ is in I_n .

6. Model Interpretation

- a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
- b. Theorem: G_0 protection graph with exactly one subject, no edges; R set of rights. Then $G_0 \vdash^* G$ iff G is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of R, and with at least one subject with no incoming edges
- c. Example: shared buffer managed by trusted third party