Outline for April 7, 2006

Reading: *text*, §3.3.3—3.4

- 1. Greetings and felicitations!
- 2. Stealing
 - a. Definition: $can \cdot steal(r, \mathbf{x}, \mathbf{y}, G_0)$ true iff there is no edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , and there exists a sequence of protection graphs $G_0, ..., G_n$ such that $G_0 \vdash^* G_n$:
 - i. G_n has an edge from **x** to **y** labeled r
 - ii. There is a sequence of rule applications $\rho_1, ..., \rho_n$ such that $G_{n-1} \vdash G_i$; and
 - iii. For all vertices \mathbf{v} , \mathbf{w} in G_{n-1} , if there is an edge from \mathbf{v} to \mathbf{y} in G_0 labeled r, then ρ_i is not of the form " \mathbf{v} grants (r to \mathbf{y}) to \mathbf{w} "
 - b. Example
 - c. Theorem: $can \cdot steal(r, \mathbf{x}, \mathbf{y}, G_0)$ iff all of the following hold:
 - i. there is no edge from **x** to **y** labeled r in G_0 ;
 - ii. there is a subject $\mathbf{x'}$ which initially spans to \mathbf{x} , or $\mathbf{x'} = \mathbf{x}$; and
 - iii. there is a vertex s with an edge labeled r to y in G_0 and for which can-share(r, x, y, G_0) holds
- 3. Conspiracy
 - a. Access set
 - b. Deletion set
 - c. Conspiracy graph
 - d. I, T sets
 - e. Theorem: can•share(r, x, y, G_0) iff there is a path from some $h(\mathbf{p}) \in I(\mathbf{x})$ to some $h(\mathbf{q}) \in T(\mathbf{Y})$
- 4. Schematic Protection Model
 - a. Model components
 - b. Link function
 - c. Filter function
 - d. Example: Take-Grant as an instance of SPM
 - e. Create operations and attenuation