
ECS 289M Lecture 2

April 3, 2006

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 2

Overview

• Protection state of system

– Describes current settings, values of
system relevant to protection

• Access control matrix

– Describes protection state precisely

– Matrix describing rights of subjects

– State transitions change elements of matrix

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 3

Description

objects (entities)

su
b
je

ct
s

s1

s2

…

s
n

o1 … o
m
 s1 … s

n

• Subjects S = { s1,…,sn }

• Objects O = { o1,…,om }

• Rights R = { r1,…,rk }

• Entries A[si, oj] ! R

• A[si, oj] = { rx, …, ry } means
subject si has rights rx, …, ry

over object oj

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 4

Example 1

• Processes p, q

• Files f, g

• Rights r, w, x, a, o

f g p q

p rwo r rwxo w

q a ro r rwxo

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 5

Example 2

• Procedures inc_ctr, dec_ctr, manage

• Variable counter

• Rights +, –, call

counter inc_ctr dec_ctr manage

inc_ctr +

dec_ctr –

manage call call call

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 6

Boolean Expression
Evaluation

• ACM controls access to database fields

– Subjects have attributes

– Verbs define type of access

– Rules associated with objects, verb pair

• Subject attempts to access object

– Rule for object, verb evaluated, grants or
denies access

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 7

Example

• Subject annie
– Attributes role (artist), groups (creative)

• Verb paint
– Default 0 (deny unless explicitly granted)

• Object picture
– Rule:

paint: ‘artist’ in subject.role and

‘creative’ in subject.groups and

time.hour ! 0 and time.hour < 5

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 8

ACM at 3AM and 10AM

… picture …

…
 a

n
n
ie

 …

paint

At 3AM, time condition

met; ACM is:

… picture …

…
 a

n
n
ie

 …

At 10AM, time condition

not met; ACM is:

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 9

History

Database:
name position age salary
Alice teacher 45 $40,000
Bob aide 20 $20,000
Cathy principal 37 $60,000
Dilbert teacher 50 $50,000
Eve teacher 33 $50,000

Queries:

1.sum(salary, “position = teacher”) = $140,000

2.sum(salary, “age > 40 & position = teacher”) should
not be answered (deduce Eve’s salary)

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 10

ACM of Database Queries

Oi = { objects referenced in query i }; let |O| = n (3, here)

f(oi) = { read } for oj " Oi, if |#j = 1,…,i Oj| $ 2, n–1

f(oi) = % for oj " Oi, otherwise

1. O1 = { Alice, Dilbert, Eve }, so |O1| = n, and:

 A[asker, Alice] = f(Alice) = { read }

 A[asker, Dilbert] = f(Dilbert) = { read }

 A[asker, Eve] = f(Eve) = { read }

and query can be answered

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 11

But Query 2

From last slide:
f(oi) = { read } for oj " Oi, if |#j = 1,…,i Oj| $ 2, n–1

f(oi) = % for oj " Oi, otherwise

2. O2 = { Alice, Dilbert } but | O1 # O2 | = n–1, so

A[asker, Alice] = f(Alice) = %

A[asker, Dilbert] = f(Dilbert) = %

and query cannot be answered

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 12

State Transitions

• Change the protection state of system

• |– represents transition

– Xi |– & Xi+1: command & moves system from

state Xi to Xi+1

– Xi |– * Xi+1: a sequence of commands
moves system from state Xi to Xi+1

• Commands often called transformation

procedures

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 13

Primitive Operations

• create subject s; create object o
– Creates new row, column in ACM; creates new column in

ACM

• destroy subject s; destroy object o
– Deletes row, column from ACM; deletes column from ACM

• enter r into A[s, o]
– Adds r rights for subject s over object o

• delete r from A[s, o]
– Removes r rights from subject s over object o

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 14

Create Subject

• Precondition: s ' S

• Primitive command: create subject s

• Postconditions:
– S(= S #{ s }, O(= O #{ s }

– ()y " O()[a([s, y] = %], ()x " S()[a([x, s] = %]

– ()x " S)()y " O)[a([x, y] = a[x, y]]

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 15

Create Object

• Precondition: o ' O

• Primitive command: create object o

• Postconditions:

– S(= S, O(= O # { o }

– ()x " S()[a([x, o] = %]

– ()x " S)()y " O)[a([x, y] = a[x, y]]

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 16

Add Right

• Precondition: s " S, o " O

• Primitive command: enter r into a[s,o]

• Postconditions:

– S(= S, O(= O

– a([s, o] = a[s, o] # { r }

– ()x " S()()y " O(– { o }) [a([x, y] = a[x, y]]

– ()x " S(– { s })()y " O() [a([x, y] = a[x, y]]

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 17

Delete Right

• Precondition: s " S, o " O

• Primitive command: delete r from a[s,o]

• Postconditions:

– S(= S, O(= O

– a([s, o] = a[s, o] – { r }

– ()x " S()()y " O(– { o }) [a([x, y] = a[x, y]]

– ()x " S(– { s })()y " O() [a([x, y] = a[x, y]]

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 18

Destroy Subject

• Precondition: s " S

• Primitive command: destroy subject s

• Postconditions:
– S(= S – { s }, O(= O – { s }

– ()y " O()[a([s, y] = %], ()x " S()[a´[x, s] = %]

– ()x " S()()y " O() [a([x, y] = a[x, y]]

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 19

Destroy Object

• Precondition: o " O

• Primitive command: destroy object o

• Postconditions:

– S(= S, O(= O – { o }

– ()x " S()[a([x, o] = %]

– ()x " S()()y " O() [a([x, y] = a[x, y]]

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 20

Creating File

• Process p creates file f with r and w
permission
command create•file(p, f)

create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];

end

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 21

Mono-Operational Commands

• Make process p the owner of file g
command make•owner(p, g)

enter own into A[p, g];
end

• Mono-operational command

– Single primitive operation in this command

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 22

Conditional Commands

• Let p give q r rights over f, if p owns f
command grant•read•file•1(p, f, q)

if own in A[p, f]
then

enter r into A[q, f];
end

• Mono-conditional command

– Single condition in this command

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 23

Biconditional Commands

• Let p give q r and w rights over f, if p
owns f and p has c rights over q
command grant•read•file•2(p, f, q)

if own in A[p, f] and c in A[p, q]
then

enter r into A[q, f];
enter w into A[q, f];

end

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 24

General Form of Commands

• Conditional part
– At most one “if” allowed

– “If” must be first thing in command

– Only “and”s allowed in “if” statement

– If condition(s) in “if” are false, body of command
not executed

• Body
– May contain commands and/or primitive

operations

– May not contain “if”s (embed them in called
commands)

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 25

Example: Invalid Command

command create•file(p, q, r)

create object o;

if r in A[p, q] then

enter r into A[p, o];

end

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 26

Example: Valid Command

command add•r•right(o, p, q, r)

if r in A[p, q] then

enter r into A[p, o];

end

command create•file(p, q, r)

create object o;

add•r•right(o, p, q, r);

end

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 27

Copy Right

• Allows possessor to give rights to
another

• Often attached to a right, so only
applies to that right
– r is read right that cannot be copied

– rc is read right that can be copied

• Is copy flag copied when giving r rights?
– Depends on model, instantiation of model

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 28

Own Right

• Usually allows possessor to change
entries in ACM column

– So owner of object can add, delete rights
for others

– May depend on what system allows

• Can’t give rights to specific (set of) users

• Can’t pass copy flag to specific (set of) users

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 29

Attenuation of Privilege

• Principle says you can’t give rights you
do not possess

– Restricts addition of rights within a system

– Usually ignored for owner

• Why? Owner gives herself rights, gives them to
others, deletes her rights.

April 3, 2006 ECS 289M, Foundations of Computer
and Information Security

Slide 30

Key Points

• Access control matrix simplest
abstraction mechanism for representing
protection state

• Transitions alter protection state

• 6 primitive operations alter matrix

– Transitions can be expressed as
commands composed of these operations
and, possibly, conditions

