
ECS 289M Lecture 3

April 5, 2006

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Overview

• Safety Question

• HRU Model

• Take-Grant Protection Model

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

What Is “Secure”?

• Adding a generic right r where there

was not one is “leaking”

• If a system S, beginning in initial state

s0, cannot leak right r, it is safe with

respect to the right r.

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Safety Question

• Does there exist an algorithm for

determining whether a protection

system S with initial state s0 is safe with

respect to a generic right r?

– Here, “safe” = “secure” for an abstract

model

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Mono-Operational Commands

• Answer: yes

• Sketch of proof:

Consider minimal sequence of commands c1,
…, ck to leak the right.

– Can omit delete, destroy

– Can merge all creates into one

Worst case: insert every right into every
entry; with s subjects and o objects initially,
and n rights, upper bound is k ! n(s+1)(o+1)

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

General Case

• Answer: no

• Sketch of proof:
Reduce halting problem to safety problem

Turing Machine review:

– Infinite tape in one direction

– States K, symbols M; distinguished blank b

– Transition function !(k, m) = (k", m", L) means in state k,
symbol m on tape location replaced by symbol m", head
moves to left one square, and enters state k"

– Halting state is qf; TM halts when it enters this state

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After !(k, C) = (k1, X, R)

where k is the current

state and k1 the next state

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Command Mapping

!(k, C) = (k1, X, R) at intermediate becomes

command ck,C(s3,s4)
if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]
then

delete k from A[s3,s3];
delete C from A[s3,s3];
enter X into A[s3,s3];
enter k1 into A[s4,s4];

end

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After !(k1, D) = (k2, Y, R)

where k1 is the current

state and k2 the next state

s5

s5

own

b k2 end

5

b

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Command Mapping

!(k1, D) = (k2, Y, R) at end becomes
command crightmostk,C(s4,s5)
if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]
then

delete end from A[s4,s4];
create subject s5;
enter own into A[s4,s5];
enter end into A[s5,s5];
delete k1 from A[s4,s4];
delete D from A[s4,s4];
enter Y into A[s4,s4];
enter k2 into A[s5,s5];

end

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Rest of Proof

• Protection system exactly simulates a TM
– Exactly 1 end right in ACM

– 1 right in entries corresponds to state

– Thus, at most 1 applicable command

• If TM enters state qf, then right has leaked

• If safety question decidable, then represent
TM as above and determine if qf leaks
– Implies halting problem decidable

• Conclusion: safety question undecidable

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Other Results

• Set of unsafe systems is recursively enumerable

• Delete create primitive; then safety question is complete in P-

SPACE

• Delete destroy, delete primitives; then safety question is

undecidable

– Systems are monotonic

• Safety question for monoconditional, monotonic protection

systems is decidable

• Safety question for monoconditional protection systems with

create, enter, delete (and no destroy) is decidable.

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Take-Grant Protection Model

• A specific (not generic) system

– Set of rules for state transitions

• Safety decidable, and in time linear with

the size of the system

• Goal: find conditions under which rights

can be transferred from one entity to

another in the system

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

System

" objects (files, …)

! subjects (users, processes, …)

don't care (either a subject or an object)

G |–x G' apply a rewriting rule x (witness) to

 G to get G'

G |–* G' apply a sequence of rewriting rules
(witness) to G to get G'

R = { t, g, r, w, … } set of rights

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Rules

#

t $ t $

$

take

g $ $

$

grant

!

g

#

#

#

#

!

!!
|-

|-

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

More Rules

create

$

$

remove
$ – %

! !

! ! ##

#|-

|-!

These four rules are called the de jure rules

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Symmetry

t
$

t $

$
#!!

!!

|–!

1. x creates (tg to new) v

2. z takes (g to v) from x

3. z grants ($ to y) to v

4. x takes ($ to y) from v

" z
v

tg

x

g

y

$

$

Similar result for grant

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Islands

• tg-path: path of distinct vertices

connected by edges labeled t or g

– Call them “tg-connected”

• island: maximal tg-connected subject-

only subgraph

– Any right one vertex has can be shared

with any other vertex

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Initial, Terminal Spans

• initial span from x to y

– x subject

– tg-path between x, y with word in { t*g } & { ' }

– Means x can give rights it has to y

• terminal span from x to y

– x subject

– tg-path between x, y with word in { t* } & { ' }

– Means x can acquire any rights y has (

((

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Bridges

• bridge: tg-path between subjects x, y,

with associated word in

{ t*, t*, t*g t*, t*g t* }

– rights can be transferred between the two

endpoints

– not an island as intermediate vertices are

objects

((()) (()

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Example

!p

!
u

"
v

!
w

"
x

!
y

!s' "

s
"

q

t

t t

t r

gg

g

• islands { p, u } { w } { y, s' }

• bridges u, v, w; w, x, y

• initial span p (associated word ')

• terminal span s's (associated word t)
(

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

can•share Predicate

Definition:

• can•share(r, x, y, G0) if, and only if,

there is a sequence of protection

graphs G0, …, Gn such that G0 |–* Gn

using only de jure rules and in Gn there

is an edge from x to y labeled r.

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

can•share Theorem

• can•share(r, x, y, G0) if, and only if, there is
an edge from x to y labeled r in G0, or the
following hold simultaneously:
– There is an s in G0 with an s-to-y edge labeled r

– There is a subject x" = x or initially spans to x

– There is a subject s" = s or terminally spans to s

– There are islands I1,…, Ik connected by bridges,
and x" in I1 and s" in Ik

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Outline of Proof

• s has r rights over y

• s" acquires r rights over y from s

– Definition of terminal span

• x" acquires r rights over y from s"

– Repeated application of sharing among vertices in
islands, passing rights along bridges

• x" gives r rights over y to x

– Definition of initial span

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Example Interpretation

• ACM is generic

– Can be applied in any situation

• Take-Grant has specific rules, rights

– Can be applied in situations matching
rules, rights

• Question: what states can evolve from a
system that is modeled using the Take-
Grant Model?

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Take-Grant Generated

Systems

• Theorem: G0 protection graph with 1

vertex, no edges; R set of rights. Then

G0 |–* G iff:

– G finite directed graph consisting of

subjects, objects, edges

– Edges labeled from nonempty subsets of R

– At least one vertex in G has no incoming

edges

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Outline of Proof

*: By construction; G final graph in theorem

– Let x1, …, xn be subjects in G

– Let x1 have no incoming edges

• Now construct G! as follows:
1. Do “x1 creates ($ & { g } to) new subject xi”

2. For all (xi, xj) where xi has a rights over xj, do

“x1 grants ($ to xj) to xi”

3. Let % be rights xi has over xj in G. Do

“xi removes (($ & { g } – % to) xj”

• Now G! is desired G

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Outline of Proof

+: Let v be initial subject, and G0 |–* G

• Inspection of rules gives:
– G is finite

– G is a directed graph

– Subjects and objects only

– All edges labeled with nonempty subsets of R

• Limits of rules:
– None allow vertices to be deleted so v in G

– None add incoming edges to vertices without incoming
edges, so v has no incoming edges

April 5, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Example: Shared Buffer

• Goal: p, q to communicate through shared buffer b controlled by

trusted entity s

1. s creates ({r, w} to new object) b

2. s grants ({r, w} to b) to p

3. s grants ({r, w} to b) to q

!

!

!

"

"

r,w

r,w

g

g

p

q

s

v

u
!

!

!

"

"

r,w

r,w

g

g

p

q

s

v

u

"

r,w

r,w

r,w

b

