ECS 289M Lecture 3

April 5, 2006

Overview

- Safety Question
- HRU Model
- Take-Grant Protection Model

Mono-Operational Commands

- Answer: yes
- Sketch of proof:

Consider minimal sequence of commands c_1 , ..., c_k to leak the right.

- Can omit delete, destroy

- Can merge all creates into one

Worst case: insert every right into every entry; with *s* subjects and *o* objects initially, and *n* rights, upper bound is $k \le n(s+1)(o+1)$

April 5, 2006

ECS 289M, Foundations of Computer and Information Security Slide 5

General Case

- Answer: no
- Sketch of proof:

Reduce halting problem to safety problem Turing Machine review:

- Infinite tape in one direction
- States K, symbols M; distinguished blank b
- Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
- Halting state is q_{f} . TM halts when it enters this state

Command Mapping

and Information Security

Command Mapping

```
\delta(k_1, D) = (k_2, Y, R) \text{ at end becomes}
command crightmost<sub>k,c</sub>(s_4, s_5)
if end in A[s_4, s_4] and k_1 in A[s_4, s_4]
and D in A[s_4, s_4]
then
delete end from A[s_4, s_4];
create subject s_5;
enter own into A[s_4, s_5];
enter end into A[s_5, s_5];
delete k_1 from A[s_4, s_4];
enter Y into A[s_4, s_4];
enter k_2 into A[s_5, s_5];
end
```

```
April 5, 2006
```

ECS 289M, Foundations of Computer and Information Security Slide 11

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command
- If TM enters state q_{f} , then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 Implies halting problem decidable
- Conclusion: safety question undecidable

Take-Grant Protection Model

- A specific (not generic) system
 Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

Islands

- *tg*-path: path of distinct vertices connected by edges labeled *t* or *g* – Call them "tg-connected"
- island: maximal *tg*-connected subjectonly subgraph
 - Any right one vertex has can be shared with any other vertex

April 5, 2006

ECS 289M, Foundations of Computer and Information Security Slide 19

Initial, Terminal Spans

- *initial span* from **x** to **y**
 - x subject
 - *tg*-path between **x**, **y** with word in { t^*g } $\exists \forall \{x\}$
 - Means \boldsymbol{x} can give rights it has to \boldsymbol{y}
- terminal span from **x** to **y**
 - x subject
 - *tg*-path between **x**, **y** with word in { t^* } \cup { v }
 - Means x can acquire any rights y has →

can•share Predicate

Definition:

 can•share(r, x, y, G₀) if, and only if, there is a sequence of protection graphs G₀, ..., G_n such that G₀ |-* G_n using only *de jure* rules and in G_n there is an edge from x to y labeled *r*.

April 5, 2006

ECS 289M, Foundations of Computer and Information Security Slide 23

can•share Theorem

- can•share(r, x, y, G₀) if, and only if, there is an edge from x to y labeled r in G₀, or the following hold simultaneously:
 - There is an **s** in G_0 with an **s**-to-**y** edge labeled r
 - There is a subject x' = x or initially spans to x
 - There is a subject s' = s or terminally spans to s
 - There are islands $I_1, ..., I_k$ connected by bridges, and **x**' in I_1 and **s**' in I_k

Example Interpretation

- ACM is generic
 - Can be applied in any situation
- Take-Grant has specific rules, rights
 - Can be applied in situations matching rules, rights
- Question: what states can evolve from a system that is modeled using the Take-Grant Model?

Take-Grant Generated Systems

- Theorem: G₀ protection graph with 1 vertex, no edges; R set of rights. Then G₀ |-* G iff:
 - G finite directed graph consisting of subjects, objects, edges
 - Edges labeled from nonempty subsets of R
 - At least one vertex in *G* has no incoming edges

April 5, 2006

ECS 289M, Foundations of Computer and Information Security Slide 27

Outline of Proof

- \Rightarrow : By construction; *G* final graph in theorem
 - Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be subjects in G
 - Let \mathbf{x}_1 have no incoming edges
- Now construct *G*′ as follows:
 - 1. Do " \mathbf{x}_1 creates ($\alpha \cup \{g\}$ to) new subject \mathbf{x}_i "
 - 2. For all $(\mathbf{x}_i, \mathbf{x}_j)$ where \mathbf{x}_i has a rights over \mathbf{x}_j , do " \mathbf{x}_1 grants (α to \mathbf{x}_j) to \mathbf{x}_i "
 - 3. Let β be rights \mathbf{x}_i has over \mathbf{x}_j in G. Do " \mathbf{x}_i removes (($\alpha \cup \{g\} \beta$ to) \mathbf{x}_i "
- Now G' is desired G

