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Overview

• Safety Question

• HRU Model

• Take-Grant Protection Model
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What Is “Secure”?

• Adding a generic right r where there

was not one is “leaking”

• If a system S, beginning in initial state

s0, cannot leak right r, it is safe with

respect to the right r.
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Safety Question

• Does there exist an algorithm for

determining whether a protection

system S with initial state s0 is safe with

respect to a generic right r?

– Here, “safe” = “secure” for an abstract

model
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Mono-Operational Commands

• Answer: yes

• Sketch of proof:

Consider minimal sequence of commands c1,
…, ck to leak the right.

– Can omit delete, destroy

– Can merge all creates into one

Worst case: insert every right into every
entry; with s subjects and o objects initially,
and n rights, upper bound is k ! n(s+1)(o+1)
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General Case

• Answer: no

• Sketch of proof:
Reduce halting problem to safety problem

Turing Machine review:

– Infinite tape in one direction

– States K, symbols M; distinguished blank b

– Transition function !(k, m) = (k", m", L) means in state k,
symbol m on tape location replaced by symbol m", head
moves to left one square, and enters state k"

– Halting state is qf; TM halts when it enters this state
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Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k
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Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After !(k, C) = (k1, X, R)

where k is the current

state and k1 the next state
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Command Mapping

!(k, C) = (k1, X, R) at intermediate becomes

command ck,C(s3,s4)
if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]
then

delete k from A[s3,s3];
delete C from A[s3,s3];
enter X into A[s3,s3];
enter k1 into A[s4,s4];

end
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Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After !(k1, D) = (k2, Y, R)

where k1 is the current

state and k2 the next state

s5

s5

own

b k2 end

5

b



April 5, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 11

Command Mapping

!(k1, D) = (k2, Y, R) at end becomes
command crightmostk,C(s4,s5)
if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]
then

delete end from A[s4,s4];
create subject s5;
enter own into A[s4,s5];
enter end into A[s5,s5];
delete k1 from A[s4,s4];
delete D from A[s4,s4];
enter Y into A[s4,s4];
enter k2 into A[s5,s5];

end
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Rest of Proof

• Protection system exactly simulates a TM
– Exactly 1 end right in ACM

– 1 right in entries corresponds to state

– Thus, at most 1 applicable command

• If TM enters state qf, then right has leaked

• If safety question decidable, then represent
TM as above and determine if qf leaks
– Implies halting problem decidable

• Conclusion: safety question undecidable
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Other Results

• Set of unsafe systems is recursively enumerable

• Delete create primitive; then safety question is complete in P-

SPACE

• Delete destroy, delete primitives; then safety question is

undecidable

– Systems are monotonic

• Safety question for monoconditional, monotonic protection

systems is decidable

• Safety question for monoconditional protection systems with

create, enter, delete (and no destroy) is decidable.

April 5, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 14

Take-Grant Protection Model

• A specific (not generic) system

– Set of rules for state transitions

• Safety decidable, and in time linear with

the size of the system

• Goal: find conditions under which rights

can be transferred from one entity to

another in the system
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System

" objects (files, …)

! subjects (users, processes, …)

# don't care (either a subject or an object)

G |–x G' apply a rewriting rule x (witness) to

 G to get G'

G |–* G' apply a sequence of rewriting rules 
(witness) to G to get G'

R = { t, g, r, w, … }   set of rights
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Rules

#

t $ t $

$

take

g $ $

$

grant

!

g

#

#

#

# # # #

!

!!
|-

|-
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More Rules

create

$

$

remove
$ – %

! !

! ! ##

#|-

|-!

These four rules are called the de jure rules
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Symmetry

t
$

t $

$
# #!!

!!

|–!

1.  x creates (tg to new) v

2.  z takes (g to v) from x

3.  z grants ($ to y) to v

4.  x takes ($ to y) from v

" z
v

tg

x

g

y

$

$

Similar result for grant
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Islands

• tg-path: path of distinct vertices

connected by edges labeled t or g

– Call them “tg-connected”

• island: maximal tg-connected subject-

only subgraph

– Any right one vertex has can be shared

with any other vertex
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Initial, Terminal Spans

• initial span from x to y

– x subject

– tg-path between x, y with word in { t*g } & { ' }

– Means x can give rights it has to y

• terminal span from x to y

– x subject

– tg-path between x, y with word in { t* } & { ' }

– Means x can acquire any rights y has (

((
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Bridges

• bridge: tg-path between subjects x, y,

with associated word in

{ t*, t*, t*g t*, t*g t* }

– rights can be transferred between the two

endpoints

– not an island as intermediate vertices are

objects

( ( ()) (( )
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Example

!p

!
u

"
v

!
w

"
x

!
y

!s' "

s
"

q

t

t t

t r

gg

g

• islands { p, u }  { w }  { y, s' }

• bridges u, v, w; w, x, y

• initial span p (associated word ')

• terminal span s's (associated word t)
(
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can•share Predicate

Definition:

• can•share(r, x, y, G0) if, and only if,

there is a sequence of protection

graphs G0, …, Gn such that G0 |–* Gn

using only de jure rules and in Gn there

is an edge from x to y labeled r.
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can•share Theorem

• can•share(r, x, y, G0) if, and only if, there is
an edge from x to y labeled r in G0, or the
following hold simultaneously:
– There is an s in G0 with an s-to-y edge labeled r

– There is a subject x" = x or initially spans to x

– There is a subject s" = s or terminally spans to s

– There are islands I1,…, Ik connected by bridges,
and x" in I1 and s" in Ik
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Outline of Proof

• s has r rights over y

• s" acquires r rights over y from s

– Definition of terminal span

• x" acquires r rights over y from s"

– Repeated application of sharing among vertices in
islands, passing rights along bridges

• x" gives r rights over y to x

– Definition of initial span
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Example Interpretation

• ACM is generic

– Can be applied in any situation

• Take-Grant has specific rules, rights

– Can be applied in situations matching
rules, rights

• Question: what states can evolve from a
system that is modeled using the Take-
Grant Model?
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Take-Grant Generated

Systems

• Theorem: G0 protection graph with 1

vertex, no edges; R set of rights. Then

G0 |–* G iff:

– G finite directed graph consisting of

subjects, objects, edges

– Edges labeled from nonempty subsets of R

– At least one vertex in G has no incoming

edges
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Outline of Proof

*: By construction; G final graph in theorem

– Let x1, …, xn be subjects in G

– Let x1 have no incoming edges

• Now construct G! as follows:
1. Do “x1 creates ($ & { g } to) new subject xi”

2. For all (xi, xj) where xi has a rights over xj, do

“x1 grants ($ to xj) to xi”

3. Let % be rights xi has over xj in G. Do

“xi removes (($ & { g } – % to) xj”

• Now G! is desired G
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Outline of Proof

+: Let v be initial subject, and G0 |–* G

• Inspection of rules gives:
– G is finite

– G is a directed graph

– Subjects and objects only

– All edges labeled with nonempty subsets of R

• Limits of rules:
– None allow vertices to be deleted so v in G

– None add incoming edges to vertices without incoming
edges, so v has no incoming edges
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Example: Shared Buffer

• Goal: p, q to communicate through shared buffer b controlled by

trusted entity s

1.  s creates ( {r, w} to new object) b

2.  s grants ( {r, w} to b) to p

3.  s grants ( {r, w} to b) to q

!

!

!

"

"

r,w

r,w

g

g

p

q

s

v

u
!

!

!

"

"

r,w

r,w

g

g

p

q

s

v

u

"

r,w

r,w

r,w

b


