
ECS 289M Lecture 4

April 7, 2006

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

can•steal Predicate

Definition:

• can•steal(r, x, y, G0) if, and only if, there is no edge
from x to y labeled r in G0, and the following hold
simultaneously:
– There is edge from x to y labeled r in Gn

– There is a sequence of rule applications !1, …, !n such that
Gi–1 |– Gi using !i

– For all vertices v, w in Gi–1, if there is an edge from v to y in
G0 labeled r, then !i is not of the form “v grants (r to y) to w”

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Example

• can•steal(#, s, w, G0):

1. u grants (t to v) to s

2. s takes (t to u) from v

3. s takes (# to w) from

u

!

! !

"

t

g
s

!

t

u

v

w

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

can•steal Theorem

• can•steal(r, x, y, G0) if, and only if, the
following hold simultaneously:

a)There is no edge from x to y labeled r in
G0

b)There exists a subject x" such that x" = x
or x" initially spans to x

c)There exists a vertex s with an edge
labelled # to y in G0

d)can•share(t, x", s, G0) holds

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Outline of Proof

$: Assume conditions hold

• x subject
– x gets t rights to s, then takes # to y from s

• x object
– can•share(t, x", s, G0) holds

– If x" has no # edge to y in G0, x" takes (# to y) from s and
grants it to x

– If x" has a edge to y in G0, x’ creates surrogate x"", gives it (t
to s) and (g to x""); then x"" takes (# to y) and grants it to x

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

Outline of Proof

%: Assume can•steal(#, x, y, G0) holds

• First two conditions immediate from definition of
can•steal, can•share

• Third condition immediate from theorem of conditions
for can•share

• Fourth condition: ! minimal length sequence of rule
applications deriving Gn from G0; i smallest index
such that Gi–1 |– Gi by rule !i and adding # from some
p to y in Gi

– What is !i?

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Outline of Proof

• Not remove or create rule
– y exists already

• Not grant rule
– Gi first graph in which edge labeled # to y is added, so by

definition of can•share, cannot be grant

• take rule: so can•share(t, p, s, G0) holds
– So is subject s" such that s" = s or terminally spans to s

– Sequence of islands with x" & I1 and s" & In

• Derive witness to can•share(t, x", s, G0) that does not
use “s grants (# to y) to” anyone

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Conspiracy

• Minimum number of actors to generate
a witness for can•share(#, x, y, G0)

• Access set describes the “reach” of a

subject

• Deletion set is set of vertices that

cannot be involved in a transfer of rights

• Build conspiracy graph to capture how

rights flow, and derive actors from it

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Example

!

! ! !

! ! !

!

"

" "

"

x a b c d

e

q

jihfy

t g
g

t
gg

r

gt

g t

z

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Access Set

• Access set A(y) with focus y: set of

vertices:

– { y }

– { x | y initially spans to x }

– { x’ | y terminally spans to x }

• Idea is that focus can give rights to, or

acquire rights from, a vertex in this set

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Example

• A(x) = { x, a } • A(e) = { e, d, i, j }

• A(b) = { b, a } • A(y) = { y }

• A(c) = { c, b, d } • A(f) = { f, y }

• A(d) = { d } • A(h) = { h, f, i }

!

! ! !

! ! !

!

"

" "

"

x a b c d

e

q

jihfy

t g
g

t
gg

r

gt

g t

z

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Deletion Set

• Deletion set '(y, y"): contains those vertices in A(y) (A(y") such

that:

– y initially spans to z and y" terminally spans to z;

– y terminally spans to z and y" initially spans to z;

– z = y

– z = y"

• Idea is that rights can be transferred between y and y" if this set

non-empty

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Example

• '(x, b) = { a } • '(d, e) = { d }

• '(b, c) = { b } • '(y, f) = { y }

• '(c, d) = { d } • '(h, f) = { f }

• '(c, e) = { d }

!

! ! !

! ! !

!

"

" "

"

x a b c d

e

q

jihfy

t g
g

t
gg

r

gt

g t

z

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Conspiracy Graph

• Abstracted graph H from G0:

– Each subject x & G0 corresponds to a

vertex h(x) & H

– If '(x, y) !"), there is an edge between

h(x) and h(y) in H

• Idea is that if h(x), h(y) are connected in

H, then rights can be transferred

between x and y in G0

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Example

!

! ! !

! ! !

!

"

" "

"

x a b c d

e

q

jihfy

t g
g

t
gg

r

gt

g t

z

!

! ! !

! ! !

!

h(x) h(b) h(c) h(d)

h(e)

h(h)h(f)h(y)

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Results

• I(x): h(x), all vertices h(y) such that y initially spans to
x

• T(x): h(x), all vertices h(y) such that y terminally
spans to x

• Theorem: can•share(#, x, y, G0) iff there exists a path
from some h(p) in I(x) to some h(q) in T(y)

• Theorem: l vertices on shortest path between h(p),
h(q) in above theorem; l conspirators necessary and
sufficient to witness

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Example: Conspirators

• I(x) = { h(x) }, T(z) = { h(e) }

• Path between h(x), h(e) so can•share(r, x, z, G0)

• Shortest path between h(x), h(e) has 4 vertices

$ Conspirators are e, c, b, x

!

! ! !

! ! !

!

h(x) h(b) h(c) h(d)

h(e)

h(h)h(f)h(y)

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Example: Witness

• e grants (r to z) to d

• c takes (r to z) from d

• c grants (r to z) to b

• b grants (r to z) to a

• x takes (r to z) from a

!

! ! !

! ! !

!

"

" "

"

x a b c d

e

q

jihfy

t g
g

t
gg

r

gt

g t

z

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Key Question

• Characterize class of models for which

safety is decidable

– Existence: Take-Grant Protection Model is

a member of such a class

– Universality: In general, question

undecidable, so for some models it is not

decidable

• What is the dividing line?

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Schematic Protection Model

• Type-based model

– Protection type: entity label determining how control rights

affect the entity

• Set at creation and cannot be changed

– Ticket: description of a single right over an entity

• Entity has sets of tickets (called a domain)

• Ticket is X/r, where X is entity and r right

– Functions determine rights transfer

• Link: are source, target “connected”?

• Filter: is transfer of ticket authorized?

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Link Predicate

• Idea: linki(X, Y) if X can assert some
control right over Y

• Conjunction of disjunction of:
– X/z & dom(X)

– X/z & dom(Y)

– Y/z & dom(X)

– Y/z & dom(Y)

– true

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Examples

• Take-Grant:

link(X, Y) = Y/g & dom(X) v X/t & dom(Y)

• Broadcast:

link(X, Y) = X/b & dom(X)

• Pull:

link(X, Y) = Y/p & dom(Y)

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Filter Function

• Range is set of copyable tickets

– Entity type, right

• Domain is subject pairs

• Copy a ticket X/r:c from dom(Y) to dom(Z)

– X/rc & dom(Y)

– linki(Y, Z)

– *(Y)/r:c & fi(*(Y), *(Z))

• One filter function per link function

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Example

• f(*(Y), *(Z)) = T + R

– Any ticket can be transferred (if other
conditions met)

• f(*(Y), *(Z)) = T + RI

– Only tickets with inert rights can be
transferred (if other conditions met)

• f(*(Y), *(Z)) =)

– No tickets can be transferred

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Example

• Take-Grant Protection Model

– TS = { subjects }, TO = { objects }

– RC = { tc, gc }, RI = { rc, wc }

– link(p, q) = p/t & dom(q) , q/g & dom(p)

– f(subject, subject) = { subject, object } +

{ tc, gc, rc, wc }

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Create Operation

• Must handle type, tickets of new entity

• Relation cc(a, b) [cc for can-create]

– Subject of type a can create entity of type b

• Rule of acyclic creates:

a b

c d

a b

c d

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Types

• cr(a, b): tickets created when subject of type
a creates entity of type b [cr for create-rule]

• B object: cr(a, b) - { b/r:c & RI }
– A gets B/r:c iff b/r:c & cr(a, b)

• B subject: cr(a, b) has two subsets
– crP(a, b) added to A, crC(a, b) added to B

– A gets B/r:c if b/r:c & crP(a, b)

– B gets A/r:c if a/r:c & crC(a, b)

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Non-Distinct Types

cr(a, a): who gets what?

• self/r:c are tickets for creator

• a/r:c tickets for created

cr(a, a) = { a/r:c, self/r:c | r:c & R}

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Attenuating Create Rule

cr(a, b) attenuating if:

1. crC(a, b) - crP(a, b) and

2. a/r:c & crP(a, b) $ self/r:c & crP(a, b)

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Example: Owner-Based Policy

• Users can create files, creator can give itself

any inert rights over file

– cc = { (user , file) }

– cr(user, file) = { file/r:c | r & RI }

• Attenuating, as graph is acyclic, loop free

owner file

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

Example: Take-Grant

• Say subjects create subjects (type s), objects (type
o), but get only inert rights over latter
– cc = { (s, s), (s, o) }

– crC(a, b) =)

– crP(s, s) = {s/tc, s/gc, s/rc, s/wc }

– crP(s, o) = {s/rc, s/wc }

• Not attenuating, as no self tickets provided; subject
creates subject

subject object

April 7, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Safety Analysis

• Goal: identify types of policies with

tractable safety analyses

• Approach: derive a state in which

additional entries, rights do not affect

the analysis; then analyze this state

– Called a maximal state

