ECS 289M Lecture 4

April 7, 2006

canesteal Predicate

Definition:

« canesteal(r, x, y, G,) if, and only if, there is no edge
from x to y labeled rin G,, and the following hold
simultaneously:

— There is edge from x to y labeled rin G,
— There is a sequence of rule applications p,, ..., p, such that
Gy |- G;using p;

— For all vertices v, win G_,, if there is an edge fromv toy in
G, labeled r, then p; is not of the form “v grants (rto y) to w”

April 7, 2006 ECS 289M, Foundations of Computer Slide 2
and Information Security

Example

« canesteal(a, s, w, G):
1. ugrants (ftov)to s
v 2. stakes (ttou)fromv

4
é g 3. s takes (a to w) from
S@® u
g u

(04 OW

April 7, 2006 ECS 289M, Foundations of Computer Slide 3
and Information Security

canessteal Theorem

« canesteal(r, x, y, Gy) if, and only if, the
following hold simultaneously:

a)There is no edge from x to y labeled rin
Go

b) There exists a subject x’ such that x’ = x
or x' initially spans to x

c) There exists a vertex s with an edge
labelled ato y in G,

d)cansshare(t, X', s, G,) holds

April 7, 2006 ECS 289M, Foundations of Computer Slide 4
and Information Security

Outline of Proof

=: Assume conditions hold

* X subject
— x gets trights to s, then takes a toy from s
* X object
— caneshare(t, x', s, G,) holds
— If X’ has no a edge toy in G, x’ takes (a to y) from s and
grants it to x
— Ifx" has a edge to y in G, x’ creates surrogate x", gives it (¢
to s) and (g to x"’); then x"’ takes (o to y) and grants it to x

April 7, 2006 ECS 289M, Foundations of Computer Slide 5
and Information Security

Outline of Proof

<: Assume canesteal(a, X, y, G,) holds

* First two conditions immediate from definition of
canesteal, can*share

* Third condition immediate from theorem of conditions
for caneshare

« Fourth condition: p minimal length sequence of rule
applications deriving G, from G,; i smallest index
such that G,_, |- G; by rule p; and adding a from some
ptoyin G,

— Whatis p;?

April 7, 2006 ECS 289M, Foundations of Computer Slide 6
and Information Security

Outline of Proof

Not remove or create rule
— y exists already

Not grant rule
— G, first graph in which edge labeled o to y is added, so by
definition of caneshare, cannot be grant
take rule: so caneshare(t, p, s, G,) holds
— Sois subject s’ such that s’ = s or terminally spans to s
— Sequence of islands with x' €/, and s" €/,
Derive witness to cansshare(t, x', s, G,) that does not
use “s grants (a to y) to” anyone

April 7, 2006 ECS 289M, Foundations of Computer Slide 7

and Information Security

Conspiracy

Minimum number of actors to generate
a witness for caneshare(a, X, Y, Gy)

Access set describes the “reach” of a
subject

Deletion set is set of vertices that
cannot be involved in a transfer of rights

Build conspiracy graph to capture how
rights flow, and derive actors from it

April 7, 2006 ECS 289M, Foundations of Computer Slide 8

and Information Security

t
e ® o<—2:
X a b
t g 8
0 = 9= @
y f
April 7, 2006 ECS 289M, Foundations of Computer Slide 9
and Information Security

« Access set A(y) with focus y: set of
vertices:
—-{y}
—{ x| y initially spans to x }
—{x’ | y terminally spans to x }

* |dea is that focus can give rights to, or
acquire rights from, a vertex in this set

April 7, 2006 ECS 289M, Foundations of Computer Slide 10
and Information Security

>0 o' o »o
X a b c d
t g g 8
o= o= @ Ot—0
y f h i J
« AX)={x,a} Ale)={e,d,i,j}
* Ab)={b,a} * Aly)={y}
* Alc)={c,b,d} * Aff)={fy}
* A(d)={d} * A(h)={h,f,i}
April 7, 2006 ECS 289M, Foundations of Computer Slide 11

and Information Security

Deletion Set

» Deletion set d(y, y’): contains those vertices in A(y) N A(y’) such
that:
— vy initially spans to z and y’ terminally spans to z;
— y terminally spans to z and y' initially spans to z;
—z=y
- 2= y’
» Idea is that rights can be transferred between y and y’ if this set
non-empty

April 7, 2006 ECS 289M, Foundations of Computer Slide 12
and Information Security

Example

>0 o< ° =
X a b c d .
t O4q
4 8 8 § e z
o= o= @ Ot—0
y f h i J
* d(x,b)={a} * 9(d,e)={d}
* d(b,c)={b} * oy, f)={y}
* d(c,d)={d} * O(h, f) ={f}
* d(c,e)={d}
April 7, 2006 ECS 289M, Foundations of Computer Slide 13

and Information Security

Conspiracy Graph

 Abstracted graph H from Gg;:

— Each subject x € G, corresponds to a
vertex h(x) e H

—If 8(x, y) # O, there is an edge between
h(x) and h(y) in H
 |dea is that if h(x), h(y) are connected in
H, then rights can be transferred
between x and y in G,

April 7, 2006 ECS 289M, Foundations of Computer Slide 14
and Information Security

X a
t 8

o= L D

y f
® @ o

h(x) h(b) h(c) h(d)

h(e)

® @ @

h(y) h(f) h(h)
April 7, 2006 ECS 289M, Foundations of Computer Slide 15

and Information Security

Results

* [/(x): h(x), all vertices h(y) such that y initially spans to

X

« T(x): h(x), all vertices h(y) such that y terminally

spans to x

« Theorem: cansshare(a, X, y, G,) iff there exists a path
from some h(p) in /(x) to some h(q) in T(y)

« Theorem: / vertices on shortest path between h(p),
h(q) in above theorem; | conspirators necessary and
sufficient to witness

April 7, 2006

ECS 289M, Foundations of Computer Slide 16
and Information Security

Example: Conspirators

® @
h(x) h(b) h(c) h(d)

h(e)
® @ L
h(y) h(f) h(h)

* I(x)={h(x)}, T(z) ={ h(e) }

« Path between h(x), h(e) so cansshare(r, X, z, G,)
« Shortest path between h(x), h(e) has 4 vertices
=> Conspirators are e, ¢, b, x

April 7, 2006 ECS 289M, Foundations of Computer Slide 17
and Information Security

Example: Witness

t
o—» D= o= g
X a b
t g g
o= 9= @
y f

* egrants(rtoz)tod
» ctakes (rtoz)fromd
« cgrants(rtoz)tob
* bgrants(rtoz)toa
+ Xxtakes (rtoz)froma

April 7, 2006 ECS 289M, Foundations of Computer Slide 18
and Information Security

Key Question

» Characterize class of models for which
safety is decidable
— Existence: Take-Grant Protection Model is
a member of such a class

— Universality: In general, question
undecidable, so for some models it is not
decidable

« What is the dividing line?

April 7, 2006 ECS 289M, Foundations of Computer Slide 19
and Information Security

Schematic Protection Model

* Type-based model
— Protection type: entity label determining how control rights
affect the entity

» Set at creation and cannot be changed

— Ticket: description of a single right over an entity
» Entity has sets of tickets (called a domain)
+ Ticket is X/r, where X is entity and r right

— Functions determine rights transfer
 Link: are source, target “connected”?
* Filter: is transfer of ticket authorized?

April 7, 2006 ECS 289M, Foundations of Computer Slide 20
and Information Security

Link Predicate

* |dea: link(X, Y) if X can assert some
control right over Y
« Conjunction of disjunction of:
— X/z € dom(X)
— X/z € dom(Y)
—Y/z € dom(X)
—Y/z € dom(Y)
— true

April 7, 2006 ECS 289M, Foundations of Computer Slide 21
and Information Security

Examples

« Take-Grant:

link(X, Y) = Y/g € dom(X) v X/t € dom(Y)
* Broadcast:

link(X, Y) = X/b € dom(X)
* Pull:

link(X, Y) =Y/p € dom(Y)

April 7, 2006 ECS 289M, Foundations of Computer Slide 22
and Information Security

Filter Function

Range is set of copyable tickets

— Entity type, right

Domain is subject pairs

Copy a ticket X/r.c from dom(Y) to dom(Z)
— X/rc € dom(Y)

— linki(Y, Z)

— »(Y)rc € f(x(Y), ©(Z))

One filter function per link function

April 7, 2006 ECS 289M, Foundations of Computer Slide 23
and Information Security

Example

. fr(Y), ©(2Z)) = Tx R

— Any ticket can be transferred (if other
conditions met)

. fe(Y), ©(Z))= T x RI

— Only tickets with inert rights can be
transferred (if other conditions met)

* (YY), ©(4)) =2

— No tickets can be transferred

April 7, 2006 ECS 289M, Foundations of Computer Slide 24
and Information Security

Example

« Take-Grant Protection Model
— TS ={ subjects }, TO = { objects }
—RC={tc,gc}, RI={rc, wc}
— link(p, q) = p/t € dom(q) v g/g € dom(p)
— f(subject, subject) = { subject, object } x
{tc, gc, rc, wc }

April 7, 2006 ECS 289M, Foundations of Computer Slide 25
and Information Security

Create Operation

« Must handle type, tickets of new entity
« Relation cc(a, b) [cc for can-create]

— Subject of type a can create entity of type b
* Rule of acyclic creates:

(@—(()—(

d e

April 7, 2006 ECS 289M, Foundations of Computer Slide 26
and Information Security

Types

 cr(a, b): tickets created when subject of type
a creates entity of type b [cr for create-rule]
« B object: cr(a, b) C{ bir.c € RI}
— A gets B/r:c iff bir.c € cr(a, b)
* B subject: cr(a, b) has two subsets
— crp(a, b) added to A, cr(a, b) added to B
— A gets B/r:c if bir.c € crp(a, b)
— B gets A/r.cif alric € crg(a, b)

April 7, 2006 ECS 289M, Foundations of Computer Slide 27
and Information Security

Non-Distinct Types

cr(a, a): who gets what?

« selflr.c are tickets for creator

* alr.c tickets for created

cr(a, a) ={alrc, selflr.c| r.c € R}

April 7, 2006 ECS 289M, Foundations of Computer Slide 28
and Information Security

Attenuating Create Rule

cr(a, b) attenuating if:
1. cre(a, b) € crp(a, b) and
2. alr.c € crp(a, b) = selflr.c € crp(a, b)

April 7, 2006 ECS 289M, Foundations of Computer Slide 29
and Information Security

Example: Owner-Based Policy

» Users can create files, creator can give itself
any inert rights over file
—cc={ (user, file)}
— cr(user, file) = { file/r.c | r € Rl }

» Attenuating, as graph is acyclic, loop free

i

April 7, 2006 ECS 289M, Foundations of Computer Slide 30
and Information Security

Example: Take-Grant

« Say subjects create subjects (type s), objects (type
0), but get only inert rights over latter
—cc={(s,8),(s,0)}
— cre(a, b) =9I
— crg(s, s) = {sltc, slgc, sirc, slwc '}
— cru(s, 0) = {slrc, slwc'}

» Not attenuating, as no self tickets provided; subject
creates subject

i
(=

April 7, 2006 ECS 289M, Foundations of Computer Slide 31
and Information Security

Safety Analysis

« Goal: identify types of policies with
tractable safety analyses

« Approach: derive a state in which
additional entries, rights do not affect
the analysis; then analyze this state
— Called a maximal state

April 7, 2006 ECS 289M, Foundations of Computer Slide 32
and Information Security

