ECS 289M Lecture 4

April 7, 2006

can•steal Predicate

Definition:

- can•steal(r, x, y, G₀) if, and only if, there is no edge from x to y labeled r in G₀, and the following hold simultaneously:
 - There is edge from **x** to **y** labeled r in G_n
 - There is a sequence of rule applications $\rho_1, ..., \rho_n$ such that $G_{i-1} \models G_i$ using ρ_i
 - For all vertices **v**, **w** in G_{i-1} , if there is an edge from **v** to **y** in G_0 labeled *r*, then ρ_i is **not** of the form "**v** grants (*r* to **y**) to **w**"

Key Question

- Characterize class of models for which safety is decidable
 - Existence: Take-Grant Protection Model is a member of such a class
 - Universality: In general, question undecidable, so for some models it is not decidable
- What is the dividing line?

April 7, 2006

ECS 289M, Foundations of Computer and Information Security Slide 19

Schematic Protection Model

- Type-based model
 - Protection type: entity label determining how control rights affect the entity
 - Set at creation and cannot be changed
 - Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a domain)
 - Ticket is **X**/*r*, where **X** is entity and *r* right
 - Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?

ECS 289M, Foundations of Computer and Information Security

Example Take-Grant Protection Model $-TS = \{ \text{ subjects } \}, TO = \{ \text{ objects } \}$ $-RC = \{ tc, gc \}, RI = \{ rc, wc \}$ $-link(\mathbf{p}, \mathbf{q}) = \mathbf{p}/t \in dom(\mathbf{q}) \lor \mathbf{q}/g \in dom(\mathbf{p})$ - f(subject, subject) = { subject, object } × $\{ tc, qc, rc, wc \}$ April 7, 2006 ECS 289M. Foundations of Computer Slide 25 and Information Security Create Operation Must handle type, tickets of new entity Relation cc(a, b) [cc for can-create] - Subject of type a can create entity of type b • Rule of acyclic creates: April 7, 2006 ECS 289M, Foundations of Computer Slide 26 and Information Security

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Non-Distinct Types

cr(a, a): who gets what?

- *self*/*r*:*c* are tickets for creator
- a/r:c tickets for created

$$cr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \}$$

Attenuating Create Rule

cr(*a*, *b*) attenuating if:

- 1. $cr_{C}(a, b) \subseteq cr_{P}(a, b)$ and
- 2. $a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b)$

April 7, 2006

ECS 289M, Foundations of Computer and Information Security Slide 29

Example: Owner-Based Policy

- Users can create files, creator can give itself any inert rights over file
 - cc = { (user , file) }
 - $cr(user, file) = \{ file/r:c \mid r \in RI \}$
- Attenuating, as graph is acyclic, loop free

ECS 289M, Foundations of Computer and Information Security

Colled a maximal state

- Called a maximal state

ECS 289M, Foundations of Computer and Information Security