
ECS 289M Lecture 6

April 12, 2006

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Safety Result

• If the scheme is acyclic and attenuating,

the safety question is decidable

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Expressive Power

• How do the sets of systems that models

can describe compare?

– If HRU equivalent to SPM, SPM provides

more specific answer to safety question

– If HRU describes more systems, SPM

applies only to the systems it can describe

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

HRU vs. SPM

• SPM more abstract

– Analyses focus on limits of model, not details of

representation

• HRU allows revocation

– SPM has no equivalent to delete, destroy

• HRU allows multiparent creates

– SPM cannot express multiparent creates easily, and not at

all if the parents are of different types because can•create

allows for only one type of creator

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Multiparent Create

• Solves mutual suspicion problem
– Create proxy jointly, each gives it needed rights

• In HRU:
command multicreate(s0, s1, o)

if r in a[s0, s1] and r in a[s1, s0]

then

create object o;

enter r into a[s0, o];

enter r into a[s1, o];

end

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

SPM and Multiparent Create

• cc extended in obvious way

– cc ! TS " … " TS " T

• Symbols

– X1, …, Xn parents, Y created

– R1,i, R2,i, R3, R4,i ! R

• Rules

– crP,i(#(X1), …, #(Xn)) = Y/R1,1 $ Xi/R2,i

– crC(#(X1), …, #(Xn)) = Y/R3 $ X1/R4,1 $ … $ Xn/R4,n

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Example

• Anna, Bill must do something cooperatively
– But they don’t trust each other

• Jointly create a proxy
– Each gives proxy only necessary rights

• In ESPM:
– Anna, Bill type a; proxy type p; right x % R

– cc(a, a) = p

– crAnna(a, a, p) = crBill(a, a, p) = &

– crproxy(a, a, p) = { Anna/x, Bill//x }

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with
2-parent joint create

• Definition of 3-parent joint create
(subjects P1, P2, P3; child C):
– cc(#(P1), #(P2), #(P3)) = Z ! T

– crP1(#(P1), #(P2), #(P3)) = C/R1,1 $ P1/R2,1

– crP2(#(P1), #(P2), #(P3)) = C/R2,1 $ P2/R2,2

– crP3(#(P1), #(P2), #(P3)) = C/R3,1 $ P3/R2,3

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

General Approach

• Define agents for parents and child

– Agents act as surrogates for parents

– If create fails, parents have no extra rights

– If create succeeds, parents, child have

exactly same rights as in 3-parent creates

• Only extra rights are to agents (which are never

used again, and so these rights are irrelevant)

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Entities and Types

• Parents P1, P2, P3 have types p1, p2, p3

• Child C of type c

• Parent agents A1, A2, A3 of types a1, a2,
a3

• Child agent S of type s

• Type t is parentage
– if X/t % dom(Y), X is Y’s parent

• Types t, a1, a2, a3, s are new types

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Can•Create

• Following added to can•create:

– cc(p1) = a1

– cc(p2, a1) = a2

– cc(p3, a2) = a3

• Parents creating their agents; note agents have maximum of 2

parents

– cc(a3) = s

• Agent of all parents creates agent of child

– cc(s) = c

• Agent of child creates child

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Creation Rules

• Following added to create rule:

– crP(p1, a1) = &

– crC(p1, a1) = p1/Rtc

• Agent’s parent set to creating parent; agent has all rights over

parent

– crPfirst(p2, a1, a2) = &

– crPsecond(p2, a1, a2) = &

– crC(p2, a1, a2) = p2/Rtc $ a1/tc

• Agent’s parent set to creating parent and agent; agent has all

rights over parent (but not over agent)

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Creation Rules

– crPfirst(p3, a2, a3) = &

– crPsecond(p3, a2, a3) = &

– crC(p3, a2, a3) = p3/Rtc $ a2/tc

• Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

– crP(a3, s) = &

– crC(a3, s) = a3/tc
• Child’s agent has third agent as parent crP(a3, s) = &

– crP(s, c) = s /Rtc

– crC(s, c) = c/R3t

• Child’s agent gets full rights over child; child gets R3 rights over
agent

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Link Predicates

• Idea: no tickets to parents until child created
– Done by requiring each agent to have its own parent rights

– link1(A1, A2) = A1/t % dom(A2) ' A2/t % dom(A2)

– link1(A2, A3) = A2/t % dom(A3) ' A3/t % dom(A3)

– link2(S, A3) = A3/t % dom(S) ' C/t % dom(C)

– link3(A1, C) = C/t % dom(A1)

– link3(A2, C) = C/t % dom(A2)

– link3(A3, C) = C/t % dom(A3)

– link4(A1, P1) = P1/t % dom(A1) ' A1/t % dom(A1)

– link4(A2, P2) = P2/t % dom(A2) ' A2/t % dom(A2)

– link4(A3, P3) = P3/t % dom(A3) ' A3/t % dom(A3)

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Filter Functions

• f1(a2, a1) = a1/t $ c/Rtc

• f1(a3, a2) = a2/t $ c/Rtc

• f2(s, a3) = a3/t $ c/Rtc

• f3(a1, c) = p1/R4,1

• f3(a2, c) = p2/R4,2

• f3(a3, c) = p3/R4,3

• f4(a1, p1) = c/R1,1 $ p1/R2,1

• f4(a2, p2) = c/R1,2 $ p2/R2,2

• f4(a3, p3) = c/R1,3 $ p3/R2,3

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Construction

Create A1, A2, A3, S, C; then

• P1 has no relevant tickets

• P2 has no relevant tickets

• P3 has no relevant tickets

• A1 has P1/Rtc

• A2 has P2/Rtc $ A1/tc

• A3 has P3/Rtc $ A2/tc

• S has A3/tc $ C/Rtc

• C has C/R3

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Construction

• Only link2(S, A3) true (apply f2
– A3 has P3/Rtc $ A2/t $ A3/t $ C/Rtc

• Now link1(A3, A2) true (apply f1
– A2 has P2/Rtc $ A1/tc $ A2/t $ C/Rtc

• Now link1(A2, A1) true (apply f1
– A1 has P2/Rtc $ A1/tc $ A1/t $ C/Rtc

• Now all link3s true (apply f3
– C has C/R3 $ P1/R4,1 $ P2/R4,2 $ P3/R4,3

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Finish Construction

• Now link4 is true (apply f4
– P1 has C/R1,1 $ P1/R2,1

– P2 has C/R1,2 $ P2/R2,2

– P3 has C/R1,3 $ P3/R2,3

• 3-parent joint create gives same rights
to P1, P2, P3, C

• If create of C fails, link2 fails, so
construction fails

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Theorem

• The two-parent joint creation operation
can implement an n-parent joint
creation operation with a fixed number
of additional types and rights, and
augmentations to the link predicates
and filter functions.

• Proof: by construction, as above

– Difference is that the two systems need not
start at the same initial state

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Theorems

• Monotonic ESPM and the monotonic

HRU model are equivalent.

• Safety question in ESPM also decidable

if acyclic attenuating scheme

– Proof similar to that for SPM

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Expressiveness

• Graph-based representation to compare models

• Graph

– Vertex: represents entity, has static type

– Edge: represents right, has static type

• Graph rewriting rules:

– Initial state operations create graph in a particular state

– Node creation operations add nodes, incoming edges

– Edge adding operations add new edges between existing

vertices

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Example: 3-Parent Joint

Creation
• Simulate with 2-parent

– Nodes P1, P2, P3 parents

– Create node C with type c with edges of type e

– Add node A1 of type a and edge from P1 to A1 of

type e´

P
2 P

3
P
1

A
1

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Next Step

• A1, P2 create A2; A2, P3 create A3

• Type of nodes, edges are a and e´

P
2

P
3P

1

A
1 A

2

A
3

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Next Step

• A3 creates S, of type a

• S creates C, of type c

SC

P
2

P
3P

1

A
1 A

2

A
3

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Last Step

• Edge adding operations:

– P1)A1)A2)A3)S)C: P1 to C edge type e

– P2)A2)A3)S)C: P2 to C edge type e

– P3)A3)S)C: P3 to C edge type e

S

C

P
2

P
3P

1

A
1

A
2

A
3

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Definitions

• Scheme: graph representation as above

• Model: set of schemes

• Schemes A, B correspond if graph for

both is identical when all nodes with

types not in A and edges with types in A

are deleted

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Example

• Above 2-parent joint creation simulation

in scheme TWO

• Equivalent to 3-parent joint creation

scheme THREE in which P1, P2, P3, C

are of same type as in TWO, and edges

from P1, P2, P3 to C are of type e, and

no types a and e´ exist in TWO

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Simulation

Scheme A simulates scheme B iff

• every state B can reach has a corresponding state in

A that A can reach; and

• every state that A can reach either corresponds to a

state B can reach, or has a successor state that

corresponds to a state B can reach

– The last means that A can have intermediate states not

corresponding to states in B, like the intermediate ones in

TWO in the simulation of THREE

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Expressive Power

• If scheme in MA no scheme in MB can
simulate, MB less expressive than MA

• If every scheme in MA can be simulated
by a scheme in MB, MB as expressive
as MA

• If MA as expressive as MB and vice
versa, MA and MB equivalent

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Example

• Scheme A in model M
– Nodes X1, X2, X3

– 2-parent joint create

– 1 node type, 1 edge type

– No edge adding operations

– Initial state: X1, X2, X3, no edges

• Scheme B in model N
– All same as A except no 2-parent joint create

– 1-parent create

• Which is more expressive?

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

Can A Simulate B?

• Scheme A simulates 1-parent create:

have both parents be same node

– Model M as expressive as model N

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Can B Simulate A?

• Suppose X1, X2 jointly create Y in A

– Edges from X1, X2 to Y, no edge from X3 to Y

• Can B simulate this?

– Without loss of generality, X1 creates Y

– Must have edge adding operation to add edge

from X2 to Y

– One type of node, one type of edge, so operation

can add edge between any 2 nodes

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 33

No

• All nodes in A have even number of incoming edges
– 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from X2 to
C can add one from X3 to C
– A cannot enter this state

– B cannot transition to a state in which Y has even number of
incoming edges

• No remove rule

• So B cannot simulate A; N less expressive than M

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 34

Theorem

• Monotonic single-parent models are less expressive

than monotonic multiparent models

• Proof by contradiction

– Scheme A is multiparent model

– Scheme B is single parent create

– Claim: B can simulate A, without assumption that they start

in the same initial state

• Note: example assumed same initial state

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 35

Outline of Proof

• X1, X2 nodes in A

– They create Y1, Y2, Y3 using multiparent create rule

– Y1, Y2 create Z, again using multiparent create rule

– Note: no edge from Y3 to Z can be added, as A has no edge-adding

operation

X
1

X
2

Y
1

Y
3

Y
2 Z

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 36

Outline of Proof

• W, X1, X2 nodes in B

– W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to all

using edge adding rule

– Y1 creates Z, again using single parent create rule; now must add edge from X2 to Z to

simulate A

– Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in scheme

A!

X
1

X
2

Y
1

Y
3

Y
2 Z

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 37

Meaning

• Scheme B cannot simulate scheme A,

contradicting hypothesis

• ESPM more expressive than SPM

– ESPM multiparent and monotonic

– SPM monotonic but single parent

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 38

Typed Access Matrix Model

• Like ACM, but with set of types T

– All subjects, objects have types

– Set of types for subjects TS

• Protection state is (S, O, #, A)

– #:O)T specifies type of each object

– If X subject, #(X) in TS

– If X object, #(X) in T – TS

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 39

Create Rules

• Subject creation
– create subject s of type ts

– s must not exist as subject or object when
operation executed

– ts % TS

• Object creation
– create object o of type to

– o must not exist as subject or object when
operation executed

– to % T – TS

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 40

Create Subject

• Precondition: s * S

• Primitive command: create subject s of type
t

• Postconditions:
– S´ = S ${ s }, O´ = O ${ s }

– (+y % O)[!´(y) = ! (y)], !´(s) = t

– (+y % O´)[a´[s, y] = &], (+x % S´)[a´[x, s] = &]

– (+x % S)(+y % O)[a´[x, y] = a[x, y]]

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 41

Create Object

• Precondition: o * O

• Primitive command: create object o of
type t

• Postconditions:
– S´ = S, O´ = O $ { o }

– (+y % O)[!´(y) = ! (y)], !´(o) = t

– (+x % S´)[a´[x, o] = &]

– (+x % S)(+y % O)[a´[x, y] = a[x, y]]

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 42

Definitions

• MTAM Model: TAM model without

delete, destroy

– MTAM is Monotonic TAM

• ,(x1:t1, ..., xn:tn) create command

– ti child type in , if any of create subject xi

of type ti or create object xi of type ti
occur in ,

– ti parent type otherwise

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 43

Cyclic Creates

command havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)

create subject s1 of type u;

create object o1 of type v;

create object o3 of type w;

enter r into a[s2, s1];

enter r into a[s2, o2];

enter r into a[s2, o4]

end

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 44

Creation Graph

• u, v, w child types

• u, v, w also parent

types

• Graph: lines from

parent types to child

types

• This one has cycles

u

v w

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 45

Acyclic Creates

command havoc(s1 : u, s2 : u, o1 : v, o3 : w)

create object o1 of type v;

create object o3 of type w;

enter r into a[s2, s1];

enter r into a[s2, o1];

enter r into a[s2, o3]

end

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 46

Creation Graph

• v, w child types

• u parent type

• Graph: lines from

parent types to child

types

• This one has no

cycles

u

v w

April 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 47

Theorems

• Safety decidable for systems with acyclic MTAM

schemes

– In fact, it’s NP-hard

• Safety for acyclic ternary MATM decidable in time

polynomial in the size of initial ACM

– “Ternary” means commands have no more than 3

parameters

– Equivalent in expressive power to MTAM

