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Safety Result

• If the scheme is acyclic and attenuating,

the safety question is decidable
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Expressive Power

• How do the sets of systems that models

can describe compare?

– If HRU equivalent to SPM, SPM provides

more specific answer to safety question

– If HRU describes more systems, SPM

applies only to the systems it can describe
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HRU vs. SPM

• SPM more abstract

– Analyses focus on limits of model, not details of

representation

• HRU allows revocation

– SPM has no equivalent to delete, destroy

• HRU allows multiparent creates

– SPM cannot express multiparent creates easily, and not at

all if the parents are of different types because can•create

allows for only one type of creator
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Multiparent Create

• Solves mutual suspicion problem
– Create proxy jointly, each gives it needed rights

• In HRU:
command multicreate(s0, s1, o)

if r in a[s0, s1] and r in a[s1, s0]

then

create object o;

enter r into a[s0, o];

enter r into a[s1, o];

end
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SPM and Multiparent Create

• cc extended in obvious way

– cc ! TS " … " TS " T

• Symbols

– X1, …, Xn parents, Y created

– R1,i, R2,i, R3, R4,i ! R

• Rules

– crP,i(#(X1), …, #(Xn)) = Y/R1,1 $ Xi/R2,i

– crC(#(X1), …, #(Xn)) = Y/R3 $ X1/R4,1 $ … $ Xn/R4,n
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Example

• Anna, Bill must do something cooperatively
– But they don’t trust each other

• Jointly create a proxy
– Each gives proxy only necessary rights

• In ESPM:
– Anna, Bill type a; proxy type p; right x % R

– cc(a, a) = p

– crAnna(a, a, p) = crBill(a, a, p) = &

– crproxy(a, a, p) = { Anna/x, Bill//x }
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2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with
2-parent joint create

• Definition of 3-parent joint create
(subjects P1, P2, P3; child C):
– cc(#(P1), #(P2), #(P3)) = Z ! T

– crP1(#(P1), #(P2), #(P3)) = C/R1,1 $ P1/R2,1

– crP2(#(P1), #(P2), #(P3)) = C/R2,1 $ P2/R2,2

– crP3(#(P1), #(P2), #(P3)) = C/R3,1 $ P3/R2,3
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General Approach

• Define agents for parents and child

– Agents act as surrogates for parents

– If create fails, parents have no extra rights

– If create succeeds, parents, child have

exactly same rights as in 3-parent creates

• Only extra rights are to agents (which are never

used again, and so these rights are irrelevant)
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Entities and Types

• Parents P1, P2, P3 have types p1, p2, p3

• Child C of type c

• Parent agents A1, A2, A3 of types a1, a2,
a3

• Child agent S of type s

• Type t is parentage
– if X/t % dom(Y), X is Y’s parent

• Types t, a1, a2, a3, s are new types
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Can•Create

• Following added to can•create:

– cc(p1) = a1

– cc(p2, a1) = a2

– cc(p3, a2) = a3

• Parents creating their agents; note agents have maximum of 2

parents

– cc(a3) = s

• Agent of all parents creates agent of child

– cc(s) = c

• Agent of child creates child
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Creation Rules

• Following added to create rule:

– crP(p1, a1) = &

– crC(p1, a1) = p1/Rtc

• Agent’s parent set to creating parent; agent has all rights over

parent

– crPfirst(p2, a1, a2) = &

– crPsecond(p2, a1, a2) = &

– crC(p2, a1, a2) = p2/Rtc $ a1/tc

• Agent’s parent set to creating parent and agent; agent has all

rights over parent (but not over agent)
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Creation Rules

– crPfirst(p3, a2, a3) = &

– crPsecond(p3, a2, a3) = &

– crC(p3, a2, a3) = p3/Rtc $ a2/tc

• Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

– crP(a3, s) = &

– crC(a3, s) = a3/tc
• Child’s agent has third agent as parent crP(a3, s) = &

– crP(s, c) = s /Rtc

– crC(s, c) = c/R3t

• Child’s agent gets full rights over child; child gets R3 rights over
agent
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Link Predicates

• Idea: no tickets to parents until child created
– Done by requiring each agent to have its own parent rights

– link1(A1, A2) = A1/t % dom(A2) ' A2/t % dom(A2)

– link1(A2, A3) = A2/t % dom(A3) ' A3/t % dom(A3)

– link2(S, A3) = A3/t % dom(S) ' C/t % dom(C)

– link3(A1, C) = C/t % dom(A1)

– link3(A2, C) = C/t % dom(A2)

– link3(A3, C) = C/t % dom(A3)

– link4(A1, P1) = P1/t % dom(A1) ' A1/t % dom(A1)

– link4(A2, P2) = P2/t % dom(A2) ' A2/t % dom(A2)

– link4(A3, P3) = P3/t % dom(A3) ' A3/t % dom(A3)
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Filter Functions

• f1(a2, a1) = a1/t $ c/Rtc

• f1(a3, a2) = a2/t $ c/Rtc

• f2(s, a3) = a3/t $ c/Rtc

• f3(a1, c) = p1/R4,1

• f3(a2, c) = p2/R4,2

• f3(a3, c) = p3/R4,3

• f4(a1, p1) = c/R1,1 $ p1/R2,1

• f4(a2, p2) = c/R1,2 $ p2/R2,2

• f4(a3, p3) = c/R1,3 $ p3/R2,3
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Construction

Create A1, A2, A3, S, C; then

• P1 has no relevant tickets

• P2 has no relevant tickets

• P3 has no relevant tickets

• A1 has P1/Rtc

• A2 has P2/Rtc $ A1/tc

• A3 has P3/Rtc $ A2/tc

• S has A3/tc $ C/Rtc

• C has C/R3
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Construction

• Only link2(S, A3) true ( apply f2
– A3 has P3/Rtc $ A2/t $ A3/t $ C/Rtc

• Now link1(A3, A2) true ( apply f1
– A2 has P2/Rtc $ A1/tc $ A2/t $ C/Rtc

• Now link1(A2, A1) true ( apply f1
– A1 has P2/Rtc $ A1/tc $ A1/t $ C/Rtc

• Now all link3s true ( apply f3
– C has C/R3 $ P1/R4,1 $ P2/R4,2 $ P3/R4,3
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Finish Construction

• Now link4 is true ( apply f4
– P1 has C/R1,1 $ P1/R2,1

– P2 has C/R1,2 $ P2/R2,2

– P3 has C/R1,3 $ P3/R2,3

• 3-parent joint create gives same rights
to P1, P2, P3, C

• If create of C fails, link2 fails, so
construction fails
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Theorem

• The two-parent joint creation operation
can implement an n-parent joint
creation operation with a fixed number
of additional types and rights, and
augmentations to the link predicates
and filter functions.

• Proof: by construction, as above

– Difference is that the two systems need not
start at the same initial state
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Theorems

• Monotonic ESPM and the monotonic

HRU model are equivalent.

• Safety question in ESPM also decidable

if acyclic attenuating scheme

– Proof similar to that for SPM
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Expressiveness

• Graph-based representation to compare models

• Graph

– Vertex: represents entity, has static type

– Edge: represents right, has static type

• Graph rewriting rules:

– Initial state operations create graph in a particular state

– Node creation operations add nodes, incoming edges

– Edge adding operations add new edges between existing

vertices
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Example: 3-Parent Joint

Creation
• Simulate with 2-parent

– Nodes P1, P2, P3 parents

– Create node C with type c with edges of type e

– Add node A1 of type a and edge from P1 to A1 of

type e´

P
2 P

3
P
1

A
1
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Next Step

• A1, P2 create A2; A2, P3 create A3

• Type of nodes, edges are a and e´

P
2

P
3P

1

A
1 A

2

A
3
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Next Step

• A3 creates S, of type a

• S creates C, of type c

SC

P
2

P
3P

1

A
1 A

2

A
3
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Last Step

• Edge adding operations:

– P1)A1)A2)A3)S)C: P1 to C edge type e

– P2)A2)A3)S)C: P2 to C edge type e

– P3)A3)S)C: P3 to C edge type e

S

C

P
2

P
3P

1

A
1

A
2

A
3
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Definitions

• Scheme: graph representation as above

• Model: set of schemes

• Schemes A, B correspond if graph for

both is identical when all nodes with

types not in A and edges with types in A

are deleted
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Example

• Above 2-parent joint creation simulation

in scheme TWO

• Equivalent to 3-parent joint creation

scheme THREE in which P1, P2, P3, C

are of same type as in TWO, and edges

from P1, P2, P3 to C are of type e, and

no types a and e´ exist in TWO
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Simulation

Scheme A simulates scheme B iff

• every state B can reach has a corresponding state in

A that A can reach; and

• every state that A can reach either corresponds to a

state B can reach, or has a successor state that

corresponds to a state B can reach

– The last means that A can have intermediate states not

corresponding to states in B, like the intermediate ones in

TWO in the simulation of THREE
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Expressive Power

• If scheme in MA no scheme in MB can
simulate, MB less expressive than MA

• If every scheme in MA can be simulated
by a scheme in MB, MB as expressive
as MA

• If MA as expressive as MB and vice
versa, MA and MB equivalent
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Example

• Scheme A in model M
– Nodes X1, X2, X3

– 2-parent joint create

– 1 node type, 1 edge type

– No edge adding operations

– Initial state: X1, X2, X3, no edges

• Scheme B in model N
– All same as A except no 2-parent joint create

– 1-parent create

• Which is more expressive?
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Can A Simulate B?

• Scheme A simulates 1-parent create:

have both parents be same node

– Model M as expressive as model N
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Can B Simulate A?

• Suppose X1, X2 jointly create Y in A

– Edges from X1, X2 to Y, no edge from X3 to Y

• Can B simulate this?

– Without loss of generality, X1 creates Y

– Must have edge adding operation to add edge

from X2 to Y

– One type of node, one type of edge, so operation

can add edge between any 2 nodes
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No

• All nodes in A have even number of incoming edges
– 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from X2 to
C can add one from X3 to C
– A cannot enter this state

– B cannot transition to a state in which Y has even number of
incoming edges

• No remove rule

• So B cannot simulate A; N less expressive than M
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Theorem

• Monotonic single-parent models are less expressive

than monotonic multiparent models

• Proof by contradiction

– Scheme A is multiparent model

– Scheme B is single parent create

– Claim: B can simulate A, without assumption that they start

in the same initial state

• Note: example assumed same initial state
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Outline of Proof

• X1, X2 nodes in A

– They create Y1, Y2, Y3 using multiparent create rule

– Y1, Y2 create Z, again using multiparent create rule

– Note: no edge from Y3 to Z can be added, as A has no edge-adding

operation

X
1

X
2

Y
1

Y
3

Y
2 Z
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Outline of Proof

• W, X1, X2 nodes in B

– W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to all

using edge adding rule

– Y1 creates Z, again using single parent create rule; now must add edge from X2 to Z to

simulate A

– Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in scheme

A!

X
1

X
2

Y
1

Y
3

Y
2 Z
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Meaning

• Scheme B cannot simulate scheme A,

contradicting hypothesis

• ESPM more expressive than SPM

– ESPM multiparent and monotonic

– SPM monotonic but single parent
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Typed Access Matrix Model

• Like ACM, but with set of types T

– All subjects, objects have types

– Set of types for subjects TS

• Protection state is (S, O, #, A)

– #:O)T specifies type of each object

– If X subject, #(X) in TS

– If X object, #(X) in T – TS
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Create Rules

• Subject creation
– create subject s of type ts

– s must not exist as subject or object when
operation executed

– ts % TS

• Object creation
– create object o of type to

– o must not exist as subject or object when
operation executed

– to % T – TS
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Create Subject

• Precondition: s * S

• Primitive command: create subject s of type
t

• Postconditions:
– S´ = S ${ s }, O´ = O ${ s }

– (+y % O)[!´(y) = ! (y)], !´(s) = t

– (+y % O´)[a´[s, y] = &], (+x % S´)[a´[x, s] = &]

– (+x % S)(+y % O)[a´[x, y] = a[x, y]]
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Create Object

• Precondition: o * O

• Primitive command: create object o of
type t

• Postconditions:
– S´ = S, O´ = O $ { o }

– (+y % O)[!´(y) = ! (y)], !´(o) = t

– (+x % S´)[a´[x, o] = &]

– (+x % S)(+y % O)[a´[x, y] = a[x, y]]
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Definitions

• MTAM Model: TAM model without

delete, destroy

– MTAM is Monotonic TAM

• ,(x1:t1, ..., xn:tn) create command

– ti child type in , if any of create subject xi

of type ti or create object xi of type ti
occur in ,

– ti parent type otherwise



April 12, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 43

Cyclic Creates

command havoc(s1 : u, s2 : u, o1 : v, o2 : v, o3 : w, o4 : w)

create subject s1 of type u;

create object o1 of type v;

create object o3 of type w;

enter r into a[s2, s1];

enter r into a[s2, o2];

enter r into a[s2, o4]

end
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Creation Graph

• u, v, w child types

• u, v, w also parent

types

• Graph: lines from

parent types to child

types

• This one has cycles

u

v w
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Acyclic Creates

command havoc(s1 : u, s2 : u, o1 : v, o3 : w)

create object o1 of type v;

create object o3 of type w;

enter r into a[s2, s1];

enter r into a[s2, o1];

enter r into a[s2, o3]

end
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Creation Graph

• v, w child types

• u parent type

• Graph: lines from

parent types to child

types

• This one has no

cycles

u

v w
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Theorems

• Safety decidable for systems with acyclic MTAM

schemes

– In fact, it’s NP-hard

• Safety for acyclic ternary MATM decidable in time

polynomial in the size of initial ACM

– “Ternary” means commands have no more than 3

parameters

– Equivalent in expressive power to MTAM


