
ECS 289M Lecture 7

April 14, 2006

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Security Policy

• Policy partitions system states into:

– Authorized (secure)
• These are states the system can enter

– Unauthorized (nonsecure)
• If the system enters any of these states, it’s a

security violation

• Secure system

– Starts in authorized state

– Never enters unauthorized state

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Policies and Mechanisms

• Policy says what is, and is not, allowed

– This defines “security” for the

site/system/etc.

• Mechanisms enforce policies

• Composition of policies

– If policies conflict, discrepancies may

create security vulnerabilities

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Types of Mechanisms

secure precise

set of reachable states set of secure states

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Secure, Precise Mechanisms

• Can one devise a procedure for developing a

mechanism that is both secure and precise?

– Consider confidentiality policies only here

– Integrity policies produce same result

• Program a function with multiple inputs and one

output

– Let p be a function p: I1 ! ... ! In " R. Then p is a program

with n inputs ik # Ik, 1 ! k ! n, and one output r # R

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

Programs and Postulates

• Observability Postulate: the output of a function
encodes all available information about its inputs
– Covert channels considered part of the output

• Example: authentication function
– Inputs name, password; output Good or Bad

– If name invalid, immediately print Bad; else access database

– Problem: time output of Bad, can determine if name valid

– This means timing is part of output

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Protection Mechanism

• Let p be a function p: I1 ! ... ! In " R. A protection

mechanism m is a function m: I1 ! ... ! In " R $ E for

which, when ik # Ik, 1 ! k ! n, either

– m(i1, ..., in) = p(i1, ..., in) or

– m(i1, ..., in) # E.

• E is set of error outputs

– In above example, E = { “Password Database Missing”,

“Password Database Locked” }

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Confidentiality Policy

• Confidentiality policy for program p says which
inputs can be revealed
– Formally, for p: I1 ! ... ! In " R, it is a function c: I1 !

... ! In " A, where A % I1 ! ... ! In
– A is set of inputs available to observer

• Security mechanism is function m: I1 ! ... ! In
" R $ E
– m secure iff & m´: A " R $ E such that, for all ik #

Ik, 1 ! k ! n, m(i1, ..., in) = m´(c(i1, ..., in))

– m returns values consistent with c

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Examples

• c(i1, ..., in) = C, a constant

– Deny observer any information (output
does not vary with inputs)

• c(i1, ..., in) = (i1, ..., in), and m´ = m

– Allow observer full access to information

• c(i1, ..., in) = i1
– Allow observer information about first input

but no information about other inputs.

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Precision

• Security policy may be over-restrictive

– Precision measures how over-restrictive

• m1, m2 distinct protection mechanisms for program p

under policy c

– m1 as precise as m2 (m1 " m2) if, for all inputs i1, …, in,

m2(i1, …, in) = p(i1, …, in) ' m1(i1, …, in) = p(i1, …, in)

– m1 more precise than m2 (m1 ~ m2) if there is an input (i1´, …,

in´) such that m1(i1´, …, in´) = p(i1´, …, in´) and m2(i1´, …, in´) !

p(i1´, …, in´).

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Combining Mechanisms

• m1, m2 protection mechanisms

• m3 = m1 $ m2

– For inputs on which m1 returns same value as p, or m2

returns same value as p, m3 does also; otherwise, m3

returns same value as m1

• Theorem: if m1, m2 secure, then m3 secure

– Also, m3 " m1 and m3 " m2

– Follows from definitions of secure, precise, and m3

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Existence Theorem

• For any program p and security policy c,
there exists a precise, secure
mechanism m* such that, for all secure
mechanisms m associated with p and c,
m* " m

– Maximally precise mechanism

– Ensures security

– Minimizes number of denials of legitimate
actions

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Lack of Effective Procedure

• There is no effective procedure that
determines a maximally precise, secure
mechanism for any policy and program.

– Sketch of proof: let c be constant function,
and p compute function T(x). Assume T(x)
= 0. Consider program q, where
p;
if z = 0 then y := 1 else y := 2;
halt;

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Rest of Sketch

• m associated with q, y value of m, z output of p
corresponding to T(x)

• (x[T(x) = 0] " m(x) = 1

• &x´ [T(x´) !"0] " m(x) = 2 or m(x))

• If you can determine m, you can determine whether
T(x) = 0 for all x

• This is not possible

• Therefore no such procedure exists

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Confidentiality Policy

• Goal: prevent the unauthorized

disclosure of information

– Deals with information flow

– Integrity incidental

• Multi-level security models are best-

known examples

– Bell-LaPadula Model basis for many, or

most, of these

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Bell-LaPadula Model, Step 1

• Security levels arranged in linear
ordering

– Top Secret: highest

– Secret

– Confidential

– Unclassified: lowest

• Levels consist of security clearance L(s)

– Objects have security classification L(o)

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Example

objectsubjectsecurity level

Telephone Lists

Activity Logs

E-Mail Files

Personnel Files

UlaleyUnclassified

ClaireConfidential

SamuelSecret

TamaraTop Secret

• Tamara can read all files

• Claire cannot read Personnel or E-Mail Files

• Ulaley can only read Telephone Lists

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Reading Information

• Information flows up, not down
– “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
– Subject s can read object o iff, L(o) ! L(s) and s

has permission to read o
• Note: combines mandatory control (relationship of

security levels) and discretionary control (the required
permission)

– Sometimes called “no reads up” rule

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Writing Information

• Information flows up, not down
– “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
– Subject s can write object o iff L(s) ! L(o) and s

has permission to write o
• Note: combines mandatory control (relationship of

security levels) and discretionary control (the required
permission)

– Sometimes called “no writes down” rule

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Basic Security Theorem

Step 1

• If a system is initially in a secure state,

and every transition of the system

satisfies the simple security condition,

step 1, and the *-property, step 1, then

every state of the system is secure

– Proof: induct on the number of transitions

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Bell-LaPadula Model, Step 2

• Expand notion of security level to
include categories

• Security level is (clearance, category
set)

• Examples

– (Top Secret, { NUC, EUR, ASI })

– (Confidential, { EUR, ASI })

– (Secret, { NUC, ASI })

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Lattices

• S set, R: S ! S relation

– If a, b # S, and (a, b) # R, write aRb

• Example

– I = { 1, 2, 3}; R is !

– R = { (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3,

3) }

– So we write 1 ! 2 and 3 ! 3 but not 3 ! 2

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Relation Properties

• Reflexive
– For all a # S, aRa

– On I, ! is reflexive as 1 ! 1, 2 ! 2, 3 ! 3

• Antisymmetric
– For all a, b # S, aRb * bRa ' a = b

– On I, ! is antisymmetric

• Transitive
– For all a, b, c # S, aRb * bRc ' aRc

– On I, ! is transitive as 1 ! 2 and 2 ! 3 means 1 ! 3

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Bigger Example

• C set of complex numbers

• a # C ' a = aR + aIi, aR, aIintegers

• a !C b if, and only if, aR ! bR and aI ! bI

• a !C b is reflexive, antisymmetric,

transitive

– As ! is over integers, and aR , aI are

integers

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Partial Ordering

• Relation R orders some members of set

S

– If all ordered, it’s total ordering

• Example

– ! on integers is total ordering

– !C is partial ordering on C (because neither

3+5i !C 4+2i nor 4+2i !C 3+5i holds)

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Upper Bounds

• For a, b # S, if u in S with aRu, bRu
exists, then u is upper bound
– Least upper if there is no t # S such that

aRt, bRt, and tRu

• Example
– For 1 + 5i, 2 + 4i # C, upper bounds

include 2 + 5i, 3 + 8i, and 9 + 100i

– Least upper bound of those is 2 + 5i

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Lower Bounds

• For a, b # S, if l in S with lRa, lRb
exists, then l is lower bound
– Greatest lower if there is no t # S such that

tRa, tRb, and lRt

• Example
– For 1 + 5i, 2 + 4i # C, lower bounds include

0, -1 + 2i, 1 + 1i, and 1+4i

– Greatest lower bound of those is 1 + 4i

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Lattices

• Set S, relation R

– R is reflexive, antisymmetric, transitive on

elements of S

– For every s, t # S, there exists a greatest

lower bound under R

– For every s, t # S, there exists a least

upper bound under R

April 14, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Example

• S = { 0, 1, 2 }; R = ! is a lattice

– R is clearly reflexive, antisymmetric,

transitive on elements of S

– Least upper bound of any two elements

of S is the greater

– Greatest lower bound of any two

elements of S is the lesser

