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Composition of Policies

• Two organizations have two security

policies

• They merge

– How do they combine security policies to

create one security policy?

– Can they create a coherent, consistent

security policy?
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The Problem

• Single system with 2 users

– Each has own virtual machine

– Holly at system high, Lara at system low so

they cannot communicate directly

• CPU shared between VMs based on

load

– Forms a covert channel through which

Holly, Lara can communicate
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Example Protocol

• Holly, Lara agree:

– Begin at noon

– Lara will sample CPU utilization every minute

– To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%

– To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense

– But information flows from Holly to Lara
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Policy vs. Mechanism

• Can be hard to separate these

• In the abstract: CPU forms channel along
which information can be transmitted
– Violates *-property

– Not “writing” in traditional sense

• Conclusions:
– Model does not give sufficient conditions to

prevent communication, or

– System is improperly abstracted; need a better
definition of “writing”
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Composition of Bell-LaPadula

• Why?

– Some standards require secure components to be

connected to form secure (distributed, networked)

system

• Question

– Under what conditions is this secure?

• Assumptions

– Implementation of systems precise with respect to

each system’s security policy
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Issues

• Compose the lattices

• What is relationship among labels?

– If the same, trivial

– If different, new lattice must reflect the

relationships among the levels
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Example

LOW

(HIGH, {EAST}) (HIGH, {WEST})

(HIGH, {EAST, WEST})

LOW

(TS, {EAST}) (TS, {SOUTH})

(TS, {EAST, SOUTH})

(S, {EAST, SOUTH})

(S, {EAST}) (S, {SOUTH})
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Analysis

• Assume S < HIGH < TS

• Assume SOUTH, EAST, WEST

different

• Resulting lattice has:

– 4 clearances (LOW < S < HIGH < TS)

– 3 categories (SOUTH, EAST, WEST)
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Same Policies

• If we can change policies that

components must meet, composition is

trivial (as above)

• If we cannot, we must show

composition meets the same policy as

that of components; this can be very

hard
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Different Policies

• What does “secure” now mean?

• Which policy (components) dominates?

• Possible principles:

– Any access allowed by policy of a
component must be allowed by
composition of components (autonomy)

– Any access forbidden by policy of a
component must be forbidden by
composition of components (security)
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Implications

• Composite system satisfies security

policy of components as components’

policies take precedence

• If something neither allowed nor

forbidden by principles, then:

– Allow it (Gong & Qian)

– Disallow it (Fail-Safe Defaults)
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Example

• System X: Bob can’t access Alice’s files

• System Y: Eve, Lilith can access each

other’s files

• Composition policy:

– Bob can access Eve’s files

– Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?
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Solution (Gong & Qian)

• Notation:

– (a, b): a can read b’s files

– AS(x): access set of system x

• Set-up:
– AS(X) = !

– AS(Y) = { (Eve, Lilith), (Lilith, Eve) }

– AS(X"Y) = { (Bob, Eve), (Lilith, Alice),

  (Eve, Lilith), (Lilith, Eve) }
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Solution (Gong & Qian)

• Compute transitive closure of AS(X"Y):
– AS(X"Y)+ = {

(Bob, Eve), (Bob, Lilith), (Bob, Alice),

(Eve, Lilith), (Eve, Alice),

(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of
components:
– Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s
files
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Idea

• Composition of policies allows accesses not
mentioned by original policies

• Generate all possible allowed accesses
– Computation of transitive closure

• Eliminate forbidden accesses
– Removal of accesses disallowed by individual

access policies

• Everything else is allowed

• Note; determining if access allowed is of
polynomial complexity
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Interference

• Think of it as something used in

communication

– Holly/Lara example: Holly interferes with

the CPU utilization, and Lara detects

it—communication

• Plays role of writing (interfering) and

reading (detecting the interference)
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Model

• System as state machine

– Subjects S = { si }

– States # = { $i }

– Outputs O = { oi }

– Commands Z = { zi }

– State transition commands C = S % Z

• Note: no inputs

– Encode either as selection of commands or in

state transition commands
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Functions

• State transition function T: C%#&#

– Describes effect of executing command c
in state $

• Output function P: C%#&O

– Output of machine when executng

command c in state s

• Initial state is $0
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Example

• Users Heidi (high), Lucy (low)

• 2 bits of state, H (high) and L (low)

– System state is (H, L) where H, L are 0, 1

• 2 commands: xor0, xor1 do xor with 0, 1

– Operations affect both state bits regardless

of whether Heidi or Lucy issues it
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Example: 2-bit Machine

• S = { Heidi, Lucy }

• # = { (0,0), (0,1), (1,0), (1,1) }

• C = { xor0, xor1 }

Input States (H, L)

(0,0)(0,1)(1,0)(1,1)xor1

(1,1)(1,0)(0,1)(0,0)xor0

(1,1)(1,0)(0,1)(0,0)
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Outputs and States

• T is inductive in first argument, as

T(c0, $0) = $1; T(ci+1, $i+1) = T(ci+1,T(ci,$i))

• Let C* be set of possible sequences of

commands in C

• T*: C*%#&# and

cs = c0…cn ' T*(cs,$i) = T(cn,…,T(c0,$i)…)

• P similar; define P* similarly
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Projection

• T*(cs,$i) sequence of state transitions

• P*(cs,$i) corresponding outputs

• proj(s, cs, $i) set of outputs in P*(cs,$i)
that subject s authorized to see
– In same order as they occur in P*(cs,$i)

– Projection of outputs for s

• Intuition: list of outputs after removing
outputs that s cannot see
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Purge

• G ( S, G a group of subjects

• A ( Z, A a set of commands

• )G(cs) subsequence of cs with all
elements (s,z), s * G deleted

• )A(cs) subsequence of cs with all
elements (s,z), z * A deleted

• )G,A(cs) subsequence of cs with all
elements (s,z), s * G and z * A deleted
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Example: 2-bit Machine

• Let $0 = (0,1)

• 3 commands applied:

– Heidi applies xor0

– Lucy applies xor1

– Heidi applies xor1

• cs = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor0))

• Output is 011001

– Shorthand for sequence (0,1)(1,0)(0,1)
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Example

• proj(Heidi, cs, $0) = 011001

• proj(Lucy, cs, $0) = 101

• )Lucy(cs) = (Heidi,xor0), (Heidi,xor1)

• )Lucy,xor1(cs) = (Heidi,xor0), (Heidi,xor1)

• )Heidi (cs) = (Lucy,xor1)
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Example

• )Lucy,xor0(cs) =

(Heidi,xor0),(Lucy,xor1),(Heidi,xor1)

• )Heidi,xor0(cs) = )xor0(cs) =

(Lucy,xor1),(Heidi, xor1)

• )Heidi,xor1(cs) = (Heidi, xor0), (Lucy, xor1)

• )xor1(cs) = (Heidi, xor0)
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Noninterference

• Intuition: Set of outputs Lucy can see
corresponds to set of inputs she can see,
there is no interference

• Formally: G, G+ ( S, G !"G+; A ( Z; Users in
G executing commands in A are
noninterfering with users in G+ iff for all cs *
C*, and for all s * G+,

proj(s, cs, $i) = proj(s, )G,A(cs), $i)
– Written A,G :| G+
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Example

• Let cs = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor1))
and $0 = (0, 1)

• Take G = { Heidi }, G+ = { Lucy }, A = !

• )Heidi(cs) = (Lucy,xor1)
– So proj(Lucy, )Heidi(cs), $0) = 0

• proj(Lucy, cs, $0) = 101

• So { Heidi } :| { Lucy } is false
– Makes sense; commands issued to change H bit

also affect L bit
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Example

• Same as before, but Heidi’s commands affect
H bit only, Lucy’s the L bit only

• Output is 0H0L1H

• )Heidi(cs) = (Lucy,xor1)
– So proj(Lucy, )Heidi(cs), $0) = 0

• proj(Lucy, cs, $0) = 0

• So { Heidi } :| { Lucy } is true
– Makes sense; commands issued to change H bit

now do not affect L bit
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Security Policy

• Partitions systems into authorized,

unauthorized states

• Authorized states have no forbidden

interferences

• Hence a security policy is a set of

noninterference assertions

– See previous definition
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Alternative Development

• System X is a set of protection domains

D = { d1, …, dn }

• When command c executed, it is

executed in protection domain dom(c)

• Give alternate versions of definitions

shown previously
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Output-Consistency

• c * C, dom(c) * D

• ~dom(c) equivalence relation on states of

system X

• ~dom(c) output-consistent if

$a ~
dom(c) $b ' P(c, $a) = P(c, $b)

• Intuition: states are output-consistent if for

subjects in dom(c), projections of outputs for

both states after c are the same
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Security Policy

• D = { d1, …, dn }, di a protection domain

• r: D%D a reflexive relation

• Then r defines a security policy

• Intuition: defines how information can

flow around a system

– dirdj means info can flow from di to dj

– dirdi as info can flow within a domain
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Projection Function

• )+ analogue of ), earlier

• Commands, subjects absorbed into protection
domains

• d * D, c * C, cs * C*

• )+d(,) = ,

• )+d(csc) = )+d(cs)c if dom(c)rd

• )+d(csc) = )+d(cs) otherwise

• Intuition: if executing c interferes with d, then
c is visible; otherwise, as if c never executed
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Noninterference-Secure

• System has set of protection domains D

• System is noninterference-secure with

respect to policy r if

P*(c, T*(cs, $0)) = P*(c, T*()+d(cs), $0))

• Intuition: if executing cs causes the same

transitions for subjects in domain d as does

its projection with respect to domain d, then

no information flows in violation of the policy
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Lemma

• Let T*(cs, $0) ~
d T*()+d(cs), $0) for c * C

• If ~d output-consistent, then system is

noninterference-secure with respect to

policy r
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Proof

• d = dom(c) for c * C

• By definition of output-consistent,

T*(cs, $0) ~
d T*()+d(cs), $0)

implies

P*(c,T*(cs, $0)) = P*(c,T*()+d(cs), $0))

• This is definition of noninterference-

secure with respect to policy r
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Unwinding Theorem

• Links security of sequences of state
transition commands to security of
individual state transition commands

• Allows you to show a system design is
ML secure by showing it matches specs
from which certain lemmata derived

– Says nothing about security of system,
because of implementation, operation, etc.
issues
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Locally Respects

• r is a policy

• System X locally respects r if dom(c)
being noninterfering with d * D implies

$a ~
d T(c, $a)

• Intuition: applying c under policy r to

system X  has no effect on domain d

when X locally respects r
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Transition-Consistent

• r policy, d * D

• If $a ~
d $b implies T(c, $a) ~

d T(c, $b),

system X transition-consistent under r

• Intuition: command c does not affect

equivalence of states under policy r
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Lemma

• c1, c2 * C, d * D

• For policy r, dom(c1)rd and dom(c2)rd

• Then

T*(c1c2,$) = T(c1,T(c2,$)) = T(c2,T(c1,$))

• Intuition: if info can flow from domains

of commands into d, then order doesn’t

affect result of applying commands


