
ECS 289M Lecture 13

April 28, 2006

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Composition of Policies

• Two organizations have two security

policies

• They merge

– How do they combine security policies to

create one security policy?

– Can they create a coherent, consistent

security policy?

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

The Problem

• Single system with 2 users

– Each has own virtual machine

– Holly at system high, Lara at system low so

they cannot communicate directly

• CPU shared between VMs based on

load

– Forms a covert channel through which

Holly, Lara can communicate

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Example Protocol

• Holly, Lara agree:

– Begin at noon

– Lara will sample CPU utilization every minute

– To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%

– To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense

– But information flows from Holly to Lara

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Policy vs. Mechanism

• Can be hard to separate these

• In the abstract: CPU forms channel along
which information can be transmitted
– Violates *-property

– Not “writing” in traditional sense

• Conclusions:
– Model does not give sufficient conditions to

prevent communication, or

– System is improperly abstracted; need a better
definition of “writing”

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

Composition of Bell-LaPadula

• Why?

– Some standards require secure components to be

connected to form secure (distributed, networked)

system

• Question

– Under what conditions is this secure?

• Assumptions

– Implementation of systems precise with respect to

each system’s security policy

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Issues

• Compose the lattices

• What is relationship among labels?

– If the same, trivial

– If different, new lattice must reflect the

relationships among the levels

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Example

LOW

(HIGH, {EAST}) (HIGH, {WEST})

(HIGH, {EAST, WEST})

LOW

(TS, {EAST}) (TS, {SOUTH})

(TS, {EAST, SOUTH})

(S, {EAST, SOUTH})

(S, {EAST}) (S, {SOUTH})

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Analysis

• Assume S < HIGH < TS

• Assume SOUTH, EAST, WEST

different

• Resulting lattice has:

– 4 clearances (LOW < S < HIGH < TS)

– 3 categories (SOUTH, EAST, WEST)

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Same Policies

• If we can change policies that

components must meet, composition is

trivial (as above)

• If we cannot, we must show

composition meets the same policy as

that of components; this can be very

hard

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Different Policies

• What does “secure” now mean?

• Which policy (components) dominates?

• Possible principles:

– Any access allowed by policy of a
component must be allowed by
composition of components (autonomy)

– Any access forbidden by policy of a
component must be forbidden by
composition of components (security)

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Implications

• Composite system satisfies security

policy of components as components’

policies take precedence

• If something neither allowed nor

forbidden by principles, then:

– Allow it (Gong & Qian)

– Disallow it (Fail-Safe Defaults)

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Example

• System X: Bob can’t access Alice’s files

• System Y: Eve, Lilith can access each

other’s files

• Composition policy:

– Bob can access Eve’s files

– Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Solution (Gong & Qian)

• Notation:

– (a, b): a can read b’s files

– AS(x): access set of system x

• Set-up:
– AS(X) = !

– AS(Y) = { (Eve, Lilith), (Lilith, Eve) }

– AS(X"Y) = { (Bob, Eve), (Lilith, Alice),

 (Eve, Lilith), (Lilith, Eve) }

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Solution (Gong & Qian)

• Compute transitive closure of AS(X"Y):
– AS(X"Y)+ = {

(Bob, Eve), (Bob, Lilith), (Bob, Alice),

(Eve, Lilith), (Eve, Alice),

(Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of
components:
– Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s
files

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Idea

• Composition of policies allows accesses not
mentioned by original policies

• Generate all possible allowed accesses
– Computation of transitive closure

• Eliminate forbidden accesses
– Removal of accesses disallowed by individual

access policies

• Everything else is allowed

• Note; determining if access allowed is of
polynomial complexity

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Interference

• Think of it as something used in

communication

– Holly/Lara example: Holly interferes with

the CPU utilization, and Lara detects

it—communication

• Plays role of writing (interfering) and

reading (detecting the interference)

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Model

• System as state machine

– Subjects S = { si }

– States # = { $i }

– Outputs O = { oi }

– Commands Z = { zi }

– State transition commands C = S % Z

• Note: no inputs

– Encode either as selection of commands or in

state transition commands

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Functions

• State transition function T: C%#&#

– Describes effect of executing command c
in state $

• Output function P: C%#&O

– Output of machine when executng

command c in state s

• Initial state is $0

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Example

• Users Heidi (high), Lucy (low)

• 2 bits of state, H (high) and L (low)

– System state is (H, L) where H, L are 0, 1

• 2 commands: xor0, xor1 do xor with 0, 1

– Operations affect both state bits regardless

of whether Heidi or Lucy issues it

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Example: 2-bit Machine

• S = { Heidi, Lucy }

• # = { (0,0), (0,1), (1,0), (1,1) }

• C = { xor0, xor1 }

Input States (H, L)

(0,0)(0,1)(1,0)(1,1)xor1

(1,1)(1,0)(0,1)(0,0)xor0

(1,1)(1,0)(0,1)(0,0)

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Outputs and States

• T is inductive in first argument, as

T(c0, $0) = $1; T(ci+1, $i+1) = T(ci+1,T(ci,$i))

• Let C* be set of possible sequences of

commands in C

• T*: C*%#&# and

cs = c0…cn ' T*(cs,$i) = T(cn,…,T(c0,$i)…)

• P similar; define P* similarly

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Projection

• T*(cs,$i) sequence of state transitions

• P*(cs,$i) corresponding outputs

• proj(s, cs, $i) set of outputs in P*(cs,$i)
that subject s authorized to see
– In same order as they occur in P*(cs,$i)

– Projection of outputs for s

• Intuition: list of outputs after removing
outputs that s cannot see

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Purge

• G (S, G a group of subjects

• A (Z, A a set of commands

•)G(cs) subsequence of cs with all
elements (s,z), s * G deleted

•)A(cs) subsequence of cs with all
elements (s,z), z * A deleted

•)G,A(cs) subsequence of cs with all
elements (s,z), s * G and z * A deleted

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Example: 2-bit Machine

• Let $0 = (0,1)

• 3 commands applied:

– Heidi applies xor0

– Lucy applies xor1

– Heidi applies xor1

• cs = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor0))

• Output is 011001

– Shorthand for sequence (0,1)(1,0)(0,1)

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Example

• proj(Heidi, cs, $0) = 011001

• proj(Lucy, cs, $0) = 101

•)Lucy(cs) = (Heidi,xor0), (Heidi,xor1)

•)Lucy,xor1(cs) = (Heidi,xor0), (Heidi,xor1)

•)Heidi (cs) = (Lucy,xor1)

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Example

•)Lucy,xor0(cs) =

(Heidi,xor0),(Lucy,xor1),(Heidi,xor1)

•)Heidi,xor0(cs) =)xor0(cs) =

(Lucy,xor1),(Heidi, xor1)

•)Heidi,xor1(cs) = (Heidi, xor0), (Lucy, xor1)

•)xor1(cs) = (Heidi, xor0)

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Noninterference

• Intuition: Set of outputs Lucy can see
corresponds to set of inputs she can see,
there is no interference

• Formally: G, G+ (S, G !"G+; A (Z; Users in
G executing commands in A are
noninterfering with users in G+ iff for all cs *
C*, and for all s * G+,

proj(s, cs, $i) = proj(s,)G,A(cs), $i)
– Written A,G :| G+

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Example

• Let cs = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor1))
and $0 = (0, 1)

• Take G = { Heidi }, G+ = { Lucy }, A = !

•)Heidi(cs) = (Lucy,xor1)
– So proj(Lucy,)Heidi(cs), $0) = 0

• proj(Lucy, cs, $0) = 101

• So { Heidi } :| { Lucy } is false
– Makes sense; commands issued to change H bit

also affect L bit

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Example

• Same as before, but Heidi’s commands affect
H bit only, Lucy’s the L bit only

• Output is 0H0L1H

•)Heidi(cs) = (Lucy,xor1)
– So proj(Lucy,)Heidi(cs), $0) = 0

• proj(Lucy, cs, $0) = 0

• So { Heidi } :| { Lucy } is true
– Makes sense; commands issued to change H bit

now do not affect L bit

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

Security Policy

• Partitions systems into authorized,

unauthorized states

• Authorized states have no forbidden

interferences

• Hence a security policy is a set of

noninterference assertions

– See previous definition

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Alternative Development

• System X is a set of protection domains

D = { d1, …, dn }

• When command c executed, it is

executed in protection domain dom(c)

• Give alternate versions of definitions

shown previously

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 33

Output-Consistency

• c * C, dom(c) * D

• ~dom(c) equivalence relation on states of

system X

• ~dom(c) output-consistent if

$a ~
dom(c) $b ' P(c, $a) = P(c, $b)

• Intuition: states are output-consistent if for

subjects in dom(c), projections of outputs for

both states after c are the same

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 34

Security Policy

• D = { d1, …, dn }, di a protection domain

• r: D%D a reflexive relation

• Then r defines a security policy

• Intuition: defines how information can

flow around a system

– dirdj means info can flow from di to dj

– dirdi as info can flow within a domain

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 35

Projection Function

•)+ analogue of), earlier

• Commands, subjects absorbed into protection
domains

• d * D, c * C, cs * C*

•)+d(,) = ,

•)+d(csc) =)+d(cs)c if dom(c)rd

•)+d(csc) =)+d(cs) otherwise

• Intuition: if executing c interferes with d, then
c is visible; otherwise, as if c never executed

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 36

Noninterference-Secure

• System has set of protection domains D

• System is noninterference-secure with

respect to policy r if

P*(c, T*(cs, $0)) = P*(c, T*()+d(cs), $0))

• Intuition: if executing cs causes the same

transitions for subjects in domain d as does

its projection with respect to domain d, then

no information flows in violation of the policy

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 37

Lemma

• Let T*(cs, $0) ~
d T*()+d(cs), $0) for c * C

• If ~d output-consistent, then system is

noninterference-secure with respect to

policy r

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 38

Proof

• d = dom(c) for c * C

• By definition of output-consistent,

T*(cs, $0) ~
d T*()+d(cs), $0)

implies

P*(c,T*(cs, $0)) = P*(c,T*()+d(cs), $0))

• This is definition of noninterference-

secure with respect to policy r

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 39

Unwinding Theorem

• Links security of sequences of state
transition commands to security of
individual state transition commands

• Allows you to show a system design is
ML secure by showing it matches specs
from which certain lemmata derived

– Says nothing about security of system,
because of implementation, operation, etc.
issues

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 40

Locally Respects

• r is a policy

• System X locally respects r if dom(c)
being noninterfering with d * D implies

$a ~
d T(c, $a)

• Intuition: applying c under policy r to

system X has no effect on domain d

when X locally respects r

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 41

Transition-Consistent

• r policy, d * D

• If $a ~
d $b implies T(c, $a) ~

d T(c, $b),

system X transition-consistent under r

• Intuition: command c does not affect

equivalence of states under policy r

April 28, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 42

Lemma

• c1, c2 * C, d * D

• For policy r, dom(c1)rd and dom(c2)rd

• Then

T*(c1c2,$) = T(c1,T(c2,$)) = T(c2,T(c1,$))

• Intuition: if info can flow from domains

of commands into d, then order doesn’t

affect result of applying commands

