
ECS 289M Lecture 14

May 1, 2006

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Unwinding Theorem

• Links security of sequences of state
transition commands to security of
individual state transition commands

• Allows you to show a system design is
ML secure by showing it matches specs
from which certain lemmata derived

– Says nothing about security of system,
because of implementation, operation, etc.
issues

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Locally Respects

• r is a policy

• System X locally respects r if dom(c)
being noninterfering with d ! D implies

"a ~
d T(c, "a)

• Intuition: applying c under policy r to

system X has no effect on domain d

when X locally respects r

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Transition-Consistent

• r policy, d ! D

• If "a ~
d "b implies T(c, "a) ~

d T(c, "b),

system X transition-consistent under r

• Intuition: command c does not affect

equivalence of states under policy r

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Lemma

• c1, c2 ! C, d ! D

• For policy r, dom(c1)rd and dom(c2)rd

• Then

T*(c1c2,") = T(c1,T(c2,")) = T(c2,T(c1,"))

• Intuition: if info can flow from domains

of commands into d, then order doesn’t

affect result of applying commands

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

Theorem

• r policy, X system that is output consistent,
transition consistent, locally respects r

• X noninterference-secure with respect to
policy r

• Significance: basis for analyzing systems
claiming to enforce noninterference policy
– Establish conditions of theorem for particular set of

commands, states with respect to some policy, set
of protection domains

– Noninterference security with respect to r follows

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Proof

• Must show "a ~
d "b implies

T*(cs, "a) ~
d T*(#$d(cs), "b)

• Induct on length of cs

• Basis: cs = %, so T*(cs, ") = "; #$d(%) = %;

claim holds

• Hypothesis: cs = c1 … cn; then claim

holds

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Induction Step

• Consider cscn+1. Assume "a ~
d "b and

look at T*(#$d(cscn+1), "b)

• 2 cases:

– dom(cn+1)rd holds

– dom(cn+1)rd does not hold

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

dom(cn+1)rd Holds

T*(#$d(cscn+1), "b) = T*(#$d(cs)cn+1, "b)

= T(cn+1, T*(#$d(cs), "b))

– by definition of T* and #$d

• T(cn+1, "a) ~
d T(cn+1, "b)

– as X transition-consistent and "a ~
d "b

• T(cn+1,T*(cs,"a))~
dT(cn+1,T*(#$d(cs), "b))

– by transition-consistency and IH

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

dom(cn+1)rd Holds

T(cn+1,T*(cs,"a))~
dT(cn+1,T*(#$d(cs)cn+1, "b))

– by substitution from earlier equality

T(cn+1,T*(cs,"a))~
dT(cn+1,T*(#$d(cs)cn+1, "b))

– by definition of T*

• proving hypothesis

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

dom(cn+1)rd Does Not Hold

T*(#$d(cscn+1), "b) = T*(#$d(cs), "b)
– by definition of #$d

T*(cs, "b) = T*(#$d(cscn+1), "b)

– by above and IH

T(cn+1, T*(cs, "a)) ~
d T*(cs, "a)

– as X locally respects r, so " ~d T(cn+1, ") for any "

T(cn+1,T*(cs,"a))~
dT(cn+1,T*(#$d(cs)cn+1, "b))

– substituting back

• proving hypothesis

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Finishing Proof

• Take "a = "b = "0, so from claim proved

by induction,

T*(cs, "0) ~
d T*(#$d(cs), "0)

• By previous lemma, as X (and so ~d)

output consistent, then X is

noninterference-secure with respect to

policy r

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Access Control Matrix

• Example of interpretation

• Given: access control information

• Question: are given conditions enough

to provide noninterference security?

• Assume: system in a particular state

– Encapsulates values in ACM

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

ACM Model

• Objects L = { l1, …, lm }

– Locations in memory

• Values V = { v1, …, vn }

– Values that L can assume

• Set of states & = { "1, …, "k }

• Set of protection domains D = { d1, …, dj

}

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Functions

• value: L)&*V

– returns value v stored in location l when system in
state "

• read: D*2V

– returns set of objects observable from domain d

• write: D*2V

– returns set of objects observable from domain d

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Interpretation of ACM

• Functions represent ACM
– Subject s in domain d, object o

– r ! A[s, o] if o ! read(d)

– w ! A[s, o] if o ! write(d)

• Equivalence relation:

["a ~
dom(c) "b]'[(li ! read(d)

[value(li, "a) = value(li, "b)]]

– You can read the exactly the same locations in
both states

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Enforcing Policy r

• 5 requirements

– 3 general ones describing dependence of

commands on rights over input and output

• Hold for all ACMs and policies

– 2 that are specific to some security policies

• Hold for most policies

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Enforcing Policy r: First

• Output of command c executed in

domain dom(c) depends only on values

for which subjects in dom(c) have read

access

"a ~
dom(c) "b + P(c, "a) = P(c, "b)

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Enforcing Policy r: Second

• If c changes li, then c can only use

values of objects in read(dom(c)) to

determine new value
["a ~

dom(c) "b and

(value(li, T(c, "a)) ! value(li, "a) or

value(li, T(c, "b)) !"value(li, "b))] +

value(li, T(c, "a)) = value(li, T(c, "b))

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Enforcing Policy r: Third

• If c changes li, then dom(c) provides

subject executing c with write access to

li
value(li, T(c, "a)) !"value(li, "a) +

li ! write(dom(c))

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Enforcing Policies r: Fourth

• If domain u can interfere with domain v,
then every object that can be read in u
can also be read in v

• So if object o cannot be read in u, but
can be read in v; and object o$ in u can
be read in v, then info flows from o to o$,
then to v

Let u, v ! D; then urv + read(u) , read(v)

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Enforcing Policies r: Fifth

• Subject s can read object o in v, subject
s$ can read o in u, then domain v can

interfere with domain u

li ! read(u) and li ! write(v) + vru

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Theorem

• Let X be a system satisfying the five

conditions. The X is noninterference-

secure with respect to r

• Proof: must show X output-consistent,

locally respects r, transition-consistent

– Then by unwinding theorem, theorem holds

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Output-Consistent

• Take equivalence relation to be ~d, first

condition is definition of output-

consistent

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Locally Respects r

• Proof by contradiction: assume (dom(c),d) - r

but "a ~
d T(c, "a) does not hold

• Some object has value changed by c:

. li ! read(d) [value(li, "a) !"value(li, T(c, "a))]

• Condition 3: li ! write(d)

• Condition 5: dom(c)rd, contradiction

• So "a ~
d T(c, "a) holds, meaning X locally

respects r

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Transition Consistency

• Assume "a ~
d "b

• Must show value(li, T(c, "a)) = value(li,

T(c, "b)) for li ! read(d)

• 3 cases dealing with change that c
makes in li in states "a, "b

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Case 1

• value(li, T(c, "a)) !"value(li, "a)

• Condition 3: li ! write(dom(c))

• As li ! read(d), condition 5 says dom(c)rd

• Condition 4 says read(dom(c)) , read(d)

• As "a ~
d "b, "a ~

dom(c) "b

• Condition 2:

• value(li, T(c, "a)) = value(li, T(c, "b))

• So T(c, "a) ~
dom(c) T(c, "b), as desired

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Case 2

• value(li, T(c, "b)) !"value(li, "b)

• Condition 3: li ! write(dom(c))

• As li ! read(d), condition 5 says dom(c)rd

• Condition 4 says read(dom(c)) , read(d)

• As "a ~
d "b, "a ~

dom(c) "b

• Condition 2:

value(li, T(c, "a)) = value(li, T(c, "b))

• So T(c, "a) ~
dom(c) T(c, "b), as desired

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Case 3

• Neither of the previous two

– value(li, T(c, "a)) = value(li, "a)

– value(li, T(c, "b)) = value(li, "b)

• Interpretation of "a ~
d "b is:

for li ! read(d), value(li, "a) = value(li, "b)

• So T(c, "a) ~
d T(c, "b), as desired

• In all 3 cases, X transition-consistent

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Policies Changing Over Time

• Problem: previous analysis assumes static
system
– In real life, ACM changes as system commands

issued

• Example: w ! C* leads to current state

– cando(w, s, z) holds if s can execute z in current
state

– Condition noninterference on cando

– If ¬cando(w, Lara, “write f”), Lara can’t interfere
with any other user by writing file f

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

Generalize Noninterference

• G , S group of subjects, A , Z set of

commands, p predicate over elements of C*

• cs = (c1, …, cn) ! C*

• #$$(%) = %

• #$$((c1, …, cn)) = (c1$, …, cn$)

– ci$ = % if p(c1$, …, ci–1$) and ci = (s, z) with s ! G

and z ! A

– ci$ = ci otherwise

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Intuition

• #$$(cs) = cs

• But if p holds, and element of cs

involves both command in A and

subject in G, replace corresponding
element of cs with empty command %

– Just like deleting entries from cs as #A,G

does earlier

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 33

Noninterference

• G, G$, S groups of subjects, A , Z set

of commands, p predicate over C*

• Users in G executing commands in A
are noninterfering with users in G$ under

condition p iff, for all cs ! C*, all s ! G$,

proj(s, cs, "i) = proj(s, #$$(cs), "i)

– Written A,G :| G$ if p

May 1, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 34

Example

• From earlier one, simple security policy
based on noninterference:

((s ! S) ((z ! Z)

[{z}, {s} :| S if ¬cando(w, s, z)]

• If subject can’t execute command (the
¬cando part), subject can’t use that
command to interfere with another
subject

