ECS 289M Lecture 14

May 1, 2006

Unwinding Theorem

* Links security of sequences of state
transition commands to security of
individual state transition commands

 Allows you to show a system design is
ML secure by showing it matches specs
from which certain lemmata derived
— Says nothing about security of system,
because of implementation, operation, efc.
ISSUes

May 1, 2006 ECS 289M, Foundations of Computer Slide 2
and Information Security

Locally Respects

* ris a policy

« System X locally respects rif dom(c)
being noninterfering with d € D implies
o, ~¢ T(c, o,)

« Intuition: applying ¢ under policy r to
system X has no effect on domain d
when X locally respects r

May 1, 2006 ECS 289M, Foundations of Computer Slide 3
and Information Security

Transition-Consistent

e rpolicy,de D
e If o, ~% o, implies T(c, o,) ~? T(c, 0,),
system X transition-consistent under r

* Intuition: command ¢ does not affect
equivalence of states under policy r

May 1, 2006 ECS 289M, Foundations of Computer Slide 4
and Information Security

Lemma

cc,c,EeC deD
 For policy r, dom(c,)rd and dom(c,)rd
 Then

T*(c4¢y,0) = T(c4,T(c,,0)) = T(C,, T(c4,0))
e Intuition: if info can flow from domains

of commands into d, then order doesn’t
affect result of applying commands

May 1, 2006 ECS 289M, Foundations of Computer Slide 5
and Information Security

Theorem

» rpolicy, X system that is output consistent,
transition consistent, locally respects r

« X noninterference-secure with respect to
policy r

 Significance: basis for analyzing systems
claiming to enforce noninterference policy

— Establish conditions of theorem for particular set of
commands, states with respect to some policy, set
of protection domains

— Noninterference security with respect to r follows

May 1, 2006 ECS 289M, Foundations of Computer Slide 6
and Information Security

Proof

Must show o, ~¢ 5, implies
T*(Cs’ O-a) ~d T*(n/d(cs)1 Gb)
Induct on length of c,
Basis: ¢, = v, so T*(c,, 0) = 0; ' (V) = v;
claim holds

Hypothesis: ¢, = ¢, ... ¢,; then claim
holds

May 1, 2006 ECS 289M, Foundations of Computer Slide 7
and Information Security

Induction Step

 Consider c.c,,,. Assume o, ~ ¢, and
look at T*(nt' ,(CsC,1q), OF)

» 2 cases:
— dom(c,,.1)rd holds
— dom(c,,.1)rd does not hold

May 1, 2006 ECS 289M, Foundations of Computer Slide 8
and Information Security

dom(c,,,)rd Holds

T*(7t' (CsCret)s Op) = TH(7T' (C5)Cpriqs Op)
= T(Cpay, TH(@Wo(Cs), Op))
— by definition of T* and «',
* T(Cn+1’ Oa) ~d T(Cn+‘|’ Ob)
— as X transition-consistent and o, ~? ¢,
* T(Cpits TH(C5,0))~T(Cpaq, TH(W' (Cs), 0))
— by transition-consistency and IH

May 1, 2006 ECS 289M, Foundations of Computer Slide 9
and Information Security

dom(c,,,)rd Holds

T(Cri1, TH(C5,04))~T(Cpraq, T (' 4(Cs)Cri1, Ob))
— by substitution from earlier equality

T(Cri1, TH(C5,04))~T(Cpraq, T (' o(Cs)Cri1, Ob))
— by definition of T*

 proving hypothesis

May 1, 2006 ECS 289M, Foundations of Computer Slide 10
and Information Security

dom(c,,,)rd Does Not Hold

T*(n,d(cscnﬂ)’ O-b) = T*(Tcld(cs)v Ob)
— by definition of x’,
T*(cg, 0p) = T*(' ((CsCps1), Op)
— by above and IH
7—(Cn+1’ T*(Cs’ 0a)) ~d T*(Cs’ Oa)
— as X locally respects r, so ¢ ~? T(c,.,, o) for any o
7—(Cn+1 , T*(Cs’Oa))~dT(Cn+1 ’ T*(n,d(cs)Cn+1 , Ob))
— substituting back
 proving hypothesis

May 1, 2006 ECS 289M, Foundations of Computer Slide 11
and Information Security

Finishing Proof

» Take o, = 0, = 0, so from claim proved
by induction,

T*(Cs Og) ~ T*('4(Cs), Op)

« By previous lemma, as X (and so ~9)
output consistent, then X'is
noninterference-secure with respect to
policy r

May 1, 2006 ECS 289M, Foundations of Computer Slide 12
and Information Security

Access Control Matrix

Example of interpretation
Given: access control information

Question: are given conditions enough
to provide noninterference security?

Assume: system in a particular state
— Encapsulates values in ACM

May 1, 2006 ECS 289M, Foundations of Computer Slide 13
and Information Security

ACM Model

* Objects L={1/,, ..., 1}
— Locations in memory

* Values V={v,, ..., v, }
— Values that L can assume

« Setof states>={oy, ..., 0, }

» Set of protection domains D ={ d,, ..., d,
}

May 1, 2006 ECS 289M, Foundations of Computer Slide 14
and Information Security

Functions

* value: Lx>—V

— returns value v stored in location / when system in
state o

* read: D—2V

— returns set of objects observable from domain d
« write: D—2V

— returns set of objects observable from domain d

May 1, 2006 ECS 289M, Foundations of Computer Slide 15
and Information Security

Interpretation of ACM

* Functions represent ACM
— Subject s in domain d, object o
— re A[s, o] if o € read(d)
— w € A[s, o] if o € write(d)
» Equivalence relation:
[0, ~dom(©) g,]<>[VI. € read(d)
[value(l,, o,) = value(l, 6,) 1]

— You can read the exactly the same locations in
both states

May 1, 2006 ECS 289M, Foundations of Computer Slide 16
and Information Security

Enforcing Policy r

* 5 requirements

— 3 general ones describing dependence of
commands on rights over input and output
 Hold for all ACMs and policies
— 2 that are specific to some security policies
» Hold for most policies

May 1, 2006 ECS 289M, Foundations of Computer Slide 17
and Information Security

Enforcing Policy r: First

« Output of command ¢ executed in
domain dom(c) depends only on values
for which subjects in dom(c) have read
access

o, ~%me) g, = P(c, o,) = P(c, o,)

May 1, 2006 ECS 289M, Foundations of Computer Slide 18
and Information Security

Enforcing Policy r. Second

* If ¢ changes /, then ¢ can only use
values of objects in read(dom(c)) to
determine new value
[o, ~9°m(°) &, and

(value(l, T(c, o,)) # value(l, o) or
value(l,, T(c, o,)) # value(l, c,))] =
value(l, T(c, o,)) = value(l, T(c, o,))

May 1, 2006 ECS 289M, Foundations of Computer Slide 19
and Information Security

Enforcing Policy r: Third

* If ¢ changes [, then dom(c) provides

subject executing ¢ with write access to
I

value(l, T(c, o,)) # value(l, c,) =
l; € write(dom(c))

May 1, 2006 ECS 289M, Foundations of Computer Slide 20
and Information Security

Enforcing Policies r: Fourth

* |[f domain u can interfere with domain v,
then every object that can be read in u
can also be read in v

« So if object o cannot be read in u, but
can be read in v; and object 0’ in u can
be read in v, then info flows from o to o',

then to v
Let u, v € D; then urv = read(u) C read(v)

May 1, 2006 ECS 289M, Foundations of Computer Slide 21
and Information Security

Enforcing Policies r: Fifth

« Subject s can read object o in v, subject
s’ can read o in u, then domain v can

interfere with domain u
| € read(u) and |, € write(v) = vru

May 1, 2006 ECS 289M, Foundations of Computer Slide 22
and Information Security

Theorem

» Let X be a system satisfying the five
conditions. The X is noninterference-
secure with respecttor

* Proof. must show X output-consistent,
locally respects r, transition-consistent

— Then by unwinding theorem, theorem holds

May 1, 2006 ECS 289M, Foundations of Computer Slide 23
and Information Security

Output-Consistent

« Take equivalence relation to be ~9, first
condition is definition of output-
consistent

May 1, 2006 ECS 289M, Foundations of Computer Slide 24
and Information Security

Locally Respects r

» Proof by contradiction: assume (dom(c),d) & r
but o, ~¢ T(c, o,) does not hold

« Some object has value changed by c:

i . € read(d) [value(l,, o,) # value(l, T(c, o,))]
e Condition 3: /; € write(d)

e Condition 5: dom(c)rd, contradiction

» So o, ~% T(c, 0,) holds, meaning X locally
respects r

May 1, 2006 ECS 289M, Foundations of Computer Slide 25
and Information Security

Transition Consistency

« Assume o, ~% o,

* Must show value(/, T(c, o,)) = value(l,
I(c, o)) for |, € read(d)

« 3 cases dealing with change that ¢
makes in /; in states o, o,

May 1, 2006 ECS 289M, Foundations of Computer Slide 26
and Information Security

Case 1

value(l, T(c, o,)) # value(l, o,)
Condition 3: I, € write(dom(c))
As [, € read(d), condition 5 says dom(c)rd
Condition 4 says read(dom(c)) C read(d)
As o, ~? o, o, ~9m©) o,
Condition 2:

* value(l, T(c, o,)) = value(l,, T(c, o))
So T{(c, o,) ~9m©) T(c, o), as desired

May 1, 2006 ECS 289M, Foundations of Computer Slide 27

and Information Security

Case 2

value(l, T(c, o)) #* value(l, o)
Condition 3: I € write(dom(c))
As [, € read(d), condition 5 says dom(c)rd
Condition 4 says read(dom(c)) C read(d)
As o, ~? o, o, ~9m©) o,
Condition 2:

value(l,, T(c, o,)) = value(l,, T(c, o))
So T{(c, o,) ~9m©) T(c, o), as desired

May 1, 2006 ECS 289M, Foundations of Computer Slide 28

and Information Security

Case 3

 Neither of the previous two
— value(l,, T(c, o,)) = value(l,, c,)
— value(l,, T(c, o,)) = value(l,, o)
« Interpretation of o, ~? o, is:
for | € read(d), value(l, o,) = value(l, o,)
« So T(c, o,) ~? T(c, o,), as desired
* |n all 3 cases, X transition-consistent

May 1, 2006 ECS 289M, Foundations of Computer Slide 29
and Information Security

Policies Changing Over Time

* Problem: previous analysis assumes static
system
— In real life, ACM changes as system commands
issued
« Example: w € C* leads to current state

— cando(w, s, z) holds if s can execute z in current
state

— Condition noninterference on cando

— If =cando(w, Lara, “write '), Lara can'’t interfere
with any other user by writing file f

May 1, 2006 ECS 289M, Foundations of Computer Slide 30
and Information Security

Generalize Noninterference

G C S group of subjects, A C Z set of
commands, p predicate over elements of C*
c,=(cq, ..., C,) EC*

e (V)=
- n''((¢q, ..., C) =(c, ..., C))
— ¢/ =vifp(c/,...,c4)and c;= (s, z)withsE G
andze A

— ¢; = c; otherwise

May 1, 2006 ECS 289M, Foundations of Computer Slide 31
and Information Security

Intuition

* w'(Cs) = Cs

 Butif p holds, and element of c,
involves both command in A and
subject in G, replace corresponding
element of ¢, with empty command v

— Just like deleting entries from c; as m,
does earlier

May 1, 2006 ECS 289M, Foundations of Computer Slide 32
and Information Security

Noninterference

* G, G’ C S groups of subjects, A C Z set
of commands, p predicate over C*

« Users in G executing commands in A
are noninterfering with users in G’ under
condition p iff, for all c, € C*, all s € G/,
proj(s, ¢, 0;) = proj(s, ©"'(C), o))

— Written A,G ;| G' if p

May 1, 2006 ECS 289M, Foundations of Computer Slide 33
and Information Security

Example

* From earlier one, simple security policy
based on noninterference:

V(iseS)V(ze 2)

[{z}, {s} :| S if —cando(w, s, z)]

* If subject can’t execute command (the
-~ cando part), subject can’t use that
command to interfere with another
subject

May 1, 2006 ECS 289M, Foundations of Computer Slide 34
and Information Security

