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Why Didn’t They Work?

• For compositions to work, machine

must act same way regardless of what

precedes low level input (high, low,

nothing)

• dog does not meet this criterion

– If first input is stop_count, dog emits 0

– If high level input precedes stop_count,

dog emits 0 or 1
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State Machine Model

• 2-bit machine, levels High, Low,

meeting 4 properties:

1. For every input ik, state !j, there is an

element cm " C* such that T*(cm, !j) =

!n, where !n !"!j
–T* is total function, inputs and commands

always move system to a different state
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Property 2

• There is an equivalence relation # such that:

– If system in state !i and high level sequence of

inputs causes transition from !i to !j, then !i # !j

– If !i # !j and low level sequence of inputs i1, …, in
causes system in state !i to transition to !i$, then

there is a state !j$ such that !i$ # !j$ and the inputs

i1, …, in cause system in state !j to transition to !j$

• # holds if low level projections of both states

are same
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Property 3

• Let !i # !j. If high level sequence of

outputs o1, …, on indicate system in
state !i transitioned to state !i$, then for

some state !j$ with !j$ # !i$, high level

sequence of outputs o1$, …, om$

indicates system in !j transitioned to !j$

– High level outputs do not indicate changes

in low level projection of states
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Property 4

• Let !i # !j, let c, d be high level output

sequences, e a low level output. If ced
indicates system in state !i transitions to !i$,

then there are high level output sequences c’
and d’ and state !j$ such that c$ed$ indicates

system in state !j transitions to state !j$

– Intermingled low level, high level outputs cause

changes in low level state reflecting low level

outputs only
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Restrictiveness

• System is restrictive if it meets the

preceding 4 properties
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Composition

• Intuition: by 3 and 4, high level output

followed by low level output has same

effect as low level input, so composition

of restrictive systems should be

restrictive
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Composite System

• System M1’s outputs are M2’s inputs

• µ1i, µ2i states of M1, M2

• States of composite system pairs of M1,
M2 states (µ1i, µ2i)

• e event causing transition

• e causes transition from state (µ1a, µ2a)
to state (µ1b, µ2b) if any of 3 conditions
hold
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Conditions

1. M1 in state µ1a and e occurs, M1 transitions

to µ1b; e not an event for M2; and µ2a = µ2b

2. M2 in state µ2a and e occurs, M2 transitions

to µ2b; e not an event for M1; and µ1a = µ1b

3. M1 in state µ1a and e occurs, M1 transitions

to µ1b; M2 in state µ2a and e occurs, M2

transitions to µ2b; e is input to one machine,

and output from other
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Intuition

• Event causing transition in composite

system causes transition in at least 1 of

the components

• If transition occurs in exactly one

component, event must not cause

transition in other component when not

connected to the composite system
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Equivalence for Composite

• Equivalence relation for composite

system

(!a, !b) #C (!c, !d) iff !a # !c and !b # !d

• Corresponds to equivalence relation in

property 2 for component system
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Composition Theorem

• System resulting from composition of

two restrictive systems is itself

restrictive
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Information Flow

• How does information flow around a

system?
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Detour: Entropy

• Random variables

• Joint probability

• Conditional probability

• Entropy (or uncertainty in bits)

• Joint entropy

• Conditional entropy

• Applying it to secrecy of ciphers
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Random Variable

• Variable that represents outcome of an event

– X represents value from roll of a fair die; probability for

rolling n: p(X = n) = 1/6

– If die is loaded so 2 appears twice as often as other

numbers, p(X = 2) = 2/7 and, for n !"2, p(X = n) = 1/7

• Note: p(X) means specific value for X doesn’t matter

– Example: all values of X are equiprobable
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Joint Probability

• Joint probability of X and Y, p(X, Y), is

probability that X and Y simultaneously

assume particular values

– If X, Y independent, p(X, Y) = p(X)p(Y)

• Roll die, toss coin

– p(X = 3, Y = heads) = p(X = 3)p(Y = heads)
= 1/6 % 1/2 = 1/12
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Two Dependent Events

• X = roll of red die, Y = sum of red, blue die rolls

• Formula if events independent:

p(X=1,Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108

• But in reality, Y = 11 is possible only when X = 5 and

blue die is 6, so:

p(X=1,Y=11) = 0

p(Y=12) = 1/36p(Y=11) = 2/36p(Y=10) = 3/36

p(Y=9) = 4/36p(Y=8) = 5/36p(Y=7) = 6/36p(Y=6) = 5/36

p(Y=5) = 4/36p(Y=4) = 3/36p(Y=3) = 2/36p(Y=2) = 1/36
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Conditional Probability

• Conditional probability of X given Y,

p(X|Y), is probability that X takes on a

particular value given Y has a particular

value

• Continuing example …

– p(Y=7|X=1) = 1/6

– p(Y=7|X=3) = 1/6
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Relationship

• p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)

• Example:

– p(X=3,Y =8) = p(X=3|Y =8) p(Y =8) =

(1/5)(5/36) = 1/36

• Note: if X, Y independent:

– p(X|Y) = p(X)
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Entropy

• Uncertainty of a value, as measured in bits

• Example: X value of fair coin toss; X could be

heads or tails, so 1 bit of uncertainty

– Therefore entropy of X is H(X) = 1

• Formal definition: random variable X, values
x1, …, xn; so &i p(X = xi) = 1

H(X) = –&i p(X = xi) lg p(X = xi)
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Heads or Tails?

• H(X) = – p(X=heads) lg p(X=heads)

– p(X=tails) lg p(X=tails)

    = – (1/2) lg (1/2) – (1/2) lg (1/2)

    =   – (1/2) (–1) – (1/2) (–1) = 1

• Confirms previous intuitive result
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n-Sided Fair Die

H(X) = –&i p(X = xi) lg p(X = xi)

As p(X = xi) = 1/n, this becomes

H(X) = –&i (1/n) lg (1/ n) = –n(1/n) (–lg n)

so

H(X) = lg n

which is the number of bits in n, as

expected
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Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

W represents the winner. What is its entropy?

– w1 = Ann, w2 = Pam, w3 = Paul

– p(W= w1) = p(W= w2) = 2/5, p(W= w3) = 1/5

• So H(W) = –&i p(W = wi) lg p(W = wi)

= – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)

= lg 5 – (4/5) lg 2 = lg 5 – (4/5) ! 1.52

• If all equally likely to win, H(W) = lg 3 = 1.58
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Joint Entropy

• X takes values from { x1, …, xn }

– &i p(X=xi) = 1

• Y takes values from { y1, …, ym }

– &i p(Y=yi) = 1

• Joint entropy of X, Y is:

– H(X,Y) = –&j &i p(X=xi,Y=yj) lg p(X=xi, Y=yj)
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Example

X: roll of fair die, Y: flip of coin
• p(X=1,Y=heads) = p(X=1)p(Y=heads) = 1/12

– As X and Y are independent

• H(X,Y) = –&j &i p(X=xi,Y=yj) lg p(X=xi,Y=yj)

     = –2 [ 6 [ (1/12) lg (1/12) ] ] = lg 12
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Conditional Entropy

• X takes values from { x1, …, xn }

– &i p(X=xi) = 1

• Y takes values from { y1, …, ym }

– &i p(Y=yi) = 1

• Conditional entropy of X given Y=yj is:

– H(X | Y=yj) = –&i p(X=xi | Y=yj) lg p(X=xi | Y=yj)

• Conditional entropy of X given Y is:

– H(X | Y) = –&j p(Y=yj) &i p(X=xi | Y=yj) lg p(X=xi | Y=yj)
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Example

• X roll of red die, Y sum of red, blue roll

• Note p(X=1|Y=2) = 1, p(X=i|Y=2) = 0 for i !"1
– If the sum of the rolls is 2, both dice were 1

• H(X|Y=2) = –&i p(X=xi|Y=2) lg p(X=xi|Y=2) = 0

• Note p(X=i,Y=7) = 1/6
– If the sum of the rolls is 7, the red die can be any of 1, …, 6

and the blue die must be 7–roll of red die

• H(X|Y=7) = –&i p(X=xi|Y=7) lg p(X=xi|Y=7)

                     = –6 (1/6) lg (1/6) = lg 6
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Perfect Secrecy

• Cryptography: knowing the ciphertext

does not decrease the uncertainty of

the plaintext

• M = { m1, …, mn } set of messages

• C = { c1, …, cn } set of ciphers

• Cipher ci = E(mi) achieves perfect

secrecy if H(M | C) = H(M)
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Basics

• Bell-LaPadula Model embodies

information flow policy

– Given compartments A, B, info can flow

from A to B iff B dom A

• Variables x, y assigned compartments

x, y as well as values

– If x = A and y = B, and A dom B, then y := x

allowed but not x := y
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Entropy and Information Flow

• Idea: info flows from x to y as a result of
a sequence of commands c if you can
deduce information about x before c
from the value in y after c

• Formally:

– s time before execution of c, t time after

– H(xs | yt) < H(xs | ys)

– If no y at time s, then H(xs | yt) < H(xs)
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Example 1

• Command is x := y + z; where:

– 0 " y " 7, equal probability

– z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each

• s state before command executed; t, after; so

– H(ys) = H(yt) = –8(1/8) lg (1/8) = 3

– H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5

• If you know xt, ys can have at most 3 values, so H(ys |

xt) = –3(1/3) lg (1/3) = lg 3
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Example 2

• Command is
– if x = 1 then y := 0 else y := 1;

where:
– x, y equally likely to be either 0 or 1

• H(xs) = 1 as x can be either 0 or 1 with equal
probability

• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
– Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y

May 5, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 34

Implicit Flow of Information

• Information flows from x to y without an
explicit assignment of the form y := f(x)

– f(x) an arithmetic expression with variable x

• Example from previous slide:

– if x = 1 then y := 0

else y := 1;

• So must look for implicit flows of
information to analyze program
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Notation

• x means class of x

– In Bell-LaPadula based system, same as
“label of security compartment to which x
belongs”

• x " y means “information can flow from
an element in class of x to an element
in class of y

– Or, “information with a label placing it in
class x can flow into class y”
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Information Flow Policies

Information flow policies are usually:

• reflexive

– So information can flow freely among

members of a single class

• transitive

– So if information can flow from class 1 to

class 2, and from class 2 to class 3, then

information can flow from class 1 to class 3
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Non-Transitive Policies

• Betty is a confident of Anne

• Cathy is a confident of Betty

– With transitivity, information flows from

Anne to Betty to Cathy

• Anne confides to Betty she is having an

affair with Cathy’s spouse

– Transitivity undesirable in this case,

probably
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Non-Lattice Transitive Policies

• 2 faculty members co-PIs on a grant
– Equal authority; neither can overrule the other

• Grad students report to faculty members

• Undergrads report to grad students

• Information flow relation is:
– Reflexive and transitive

• But some elements (people) have no “least
upper bound” element
– What is it for the faculty members?
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Confidentiality Policy Model

• Lattice model fails in previous 2 cases

• Generalize: policy I = (SCI, "I, joinI):
– SCI set of security classes

– "I ordering relation on elements of SCI
– joinI function to combine two elements of SCI

• Example: Bell-LaPadula Model
– SCI set of security compartments

– "I ordering relation dom

– joinI function lub


