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Confinement Flow Model

• (I, O, confine, !)

– I = (SCI, !I, joinI)

– O set of entities

– !: O"O with (a, b) # ! (written a ! b) iff information can

flow from a to b

– for a # O, confine(a) = (aL, aU) # SCI"SCI with aL !I aU

• Interpretation: for a # O, if x !I aU, info can flow from x to a, and

if aL !I x, info can flow from a to x

• So aL lowest classification of info allowed to flow out of a, and

aU highest classification of info allowed to flow into a
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Assumptions, etc.

• Assumes: object can change security classes
– So, variable can take on security class of its data

• Object x has security class x currently

• Note transitivity not required

• If information can flow from a to b, then b
dominates a under ordering of policy I:
($ a, b # O)[ a ! b % aL !I bU ]
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Example 1

• SCI = { U, C, S, TS }, with U !I C, C !I S, and S !I TS

• a, b, c # O
– confine(a) = [ C, C ]

– confine(b) = [ S, S ]

– confine(c) = [ TS, TS ]

• Secure information flows: a ! b, a ! c, b ! c
– As aL !I bU, aL !I cU, bL !I cU

– Transitivity holds
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Example 2

• SCI, !I as in Example 1

• x, y, z # O
– confine(x) = [ C, C ]

– confine(y) = [ S, S ]

– confine(z) = [ C, TS ]

• Secure information flows: x ! y, x ! z, y ! z, z ! x,
z ! y

– As xL !I yU, xL !I zU, yL !I zU, zL !I xU, zL !I yU

– Transitivity does not hold

•  y ! z and z ! x, but y ! x  is false, because yL !I xU is false
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Transitive Non-Lattice Policies

• Q = (SQ, !Q) is a quasi-ordered set when !Q is

transitive and reflexive over SQ

• How to handle information flow?

– Define a partially ordered set containing quasi-

ordered set

– Add least upper bound, greatest lower bound to

partially ordered set

– It’s a lattice, so apply lattice rules!
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In Detail …

• $x # SQ: let f(x) = { y | y # SQ & y !Q x }
– Define SQP = { f(x) | x # SQ }

– Define !QP = { (x, y) | x, y # SQ & x ' y }

• SQP partially ordered set under !QP

• f preserves order, so y !Q x iff f(x) !QP f(y)

• Add upper, lower bounds
– SQP( = SQP ) { SQ, * }

– Upper bound ub(x, y) = { z | z # SQP & x ' z & y ' z }

– Least upper bound lub(x, y) = +ub(x, y)

• Lower bound, greatest lower bound defined analogously
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And the Policy Is …

• Now (SQP(, !QP) is lattice

• Information flow policy on quasi-ordered

set emulates that of this lattice!
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Nontransitive Flow Policies

• Government agency information flow

policy (on next slide)

• Entities public relations officers PRO,

analysts A, spymasters S

– confine(PRO) = { public, analysis }

– confine(A) = { analysis, top-level }

– confine(S) = { covert, top-level }
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Information Flow

• By confinement flow
model:
– PRO ! A, A ! PRO

– PRO ! S

– A ! S, S ! A

• Data cannot flow to
public relations officers;
not transitive
– S ! A, A ! PRO

– S ! PRO is false

top-level

analysis covert

public
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Transforming Into Lattice

• Rough idea: apply a special mapping to generate a

subset of the power set of the set of classes

– Done so this set is partially ordered

– Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation

– So it preserves non-orderings and non-transitivity of

elements corresponding to those of original set
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Dual Mapping

• R = (SCR, !R, joinR) reflexive info flow policy

• P = (SP, !P) ordered set

– Define dual mapping functions lR, hR: SCR!SP

• lR(x) = { x }

• hR(x) = { y | y # SCR & y !R x }

– SP contains subsets of SCR; !P subset relation

– Dual mapping function order preserving iff

($a, b # SCR )[ a !R b , lR(a) !P hR(b) ]



May 10, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 13

Theorem

Dual mapping from reflexive info flow policy R

to ordered set P order-preserving

Proof sketch: all notation as before

(%) Let a !R b. Then a # lR(a), a # hR(b), so

lR(a) ' hR(b), or lR(a) !P hR(b)

(-) Let lR(a) !P hR(b). Then lR(a) ' hR(b). But

lR(a) = { a }, so a # hR(b), giving a !R b
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Info Flow Requirements

• Interpretation: let confine(x) = { xL, xU },

consider class y

– Information can flow from x to element of y
iff xL !R y, or lR(xL) ' hR(y)

– Information can flow from element of y to x
iff y !R xU, or lR(y) ' hR(xU)
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Revisit Government Example

• Information flow policy is R

• Flow relationships among classes are:

public !R public

public !R analysis analysis !R  analysis

public !R  covert covert !R  covert

public !R  top-level covert !R  top-level

analysis !R  top-level top-level !R  top-level
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Dual Mapping of R

• Elements lR, hR:

lR(public) = { public }

hR(public) = { public }

lR(analysis) = { analysis }

hR(analysis) = { public, analysis }

lR(covert) = { covert }

hR(covert) = { public, covert }

lR(top-level) = { top-level }

hR(top-level) = { public, analysis, covert, top-level }
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confine

• Let p be entity of type PRO, a of type A,
s of type S

• In terms of P (not R), we get:

– confine(p) = [ { public }, { public, analysis } ]

– confine(a) = [ { analysis },

{ public, analysis, covert, top-level } ]

– confine(s) = [ { covert },

{ public, analysis, covert, top-level } ]
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And the Flow Relations Are …

• p ! a as lR(p) ' hR(a)

– lR(p) = { public }

– hR(a) = { public, analysis, covert, top-level }

• Similarly: a ! p, p ! s, a ! s, s ! a

• But s ! p is false as lR(s) . hR(p)

– lR(s) = { covert }

– hR(p) = { public, analysis }
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Analysis

• (SP, !P) is a lattice, so it can be

analyzed like a lattice policy

• Dual mapping preserves ordering,

hence non-ordering and non-transitivity,

of original policy

– So results of analysis of (SP, !P) can be

mapped back into (SCR, !R, joinR)
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Compiler-Based Mechanisms

• Detect unauthorized information flows in a
program during compilation

• Analysis not precise, but secure
– If a flow could violate policy (but may not), it is

unauthorized

– No unauthorized path along which information
could flow remains undetected

• Set of statements certified with respect to
information flow policy if flows in set of
statements do not violate that policy
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Example

if x = 1 then y := a;

else y := b;

• Info flows from x and a to y, or from x

and b to y

• Certified only if x ! y and a ! y and b ! y

– Note flows for both branches must be true

unless compiler can determine that one

branch will never be taken
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Declarations

• Notation:

x: int class { A, B }

 means x is an integer variable with

security class at least lub{ A, B }, so lub{

A, B } ! x

• Distinguished classes Low, High

– Constants are always Low
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Input Parameters

• Parameters through which data passed

into procedure

• Class of parameter is class of actual

argument
ip: type class { ip }
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Output Parameters

• Parameters through which data passed out of

procedure

– If data passed in, called input/output parameter

• As information can flow from input parameters to

output parameters, class must include this:

op: type class { r1, …, rn }

where ri is class of ith input or input/output argument
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Example

proc sum(x: int class { A };

var out: int class { A, B });

begin

out := out + x;

end;

• Require x ! out and out ! out
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Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so
class is lub{ a[i], i }

• Information flowing in:
a[i] := …

• Only value of a[i] affected, so class is
a[i]
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Assignment Statements

x := y + z;

• Information flows from y, z to x, so this

requires lub{ y, z } ! x

More generally:

y := f(x1, …, xn)

• the relation lub{ x1, …, xn } ! y must

hold
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Compound Statements

x := y + z; a := b * c – x;

• First statement: lub{ y, z } ! x

• Second statement: lub{ b, c, x } ! a

• So, both must hold (i.e., be secure)

More generally:

S1; … Sn;

• Each individual Si must be secure
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Conditional Statements

if x + y < z then a := b else d := b * c – x; end

• The statement executed reveals information about x,

y, z, so lub{ x, y, z } ! glb{ a, d }

More generally:

if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure

• lub{ x1, …, xn } !

                     glb{y | y target of assignment in S1, S2 }
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Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;

• Loop must terminate;

• S must be secure

• lub{ x1, …, xn } !

                            glb{y | y target of assignment in S }
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Goto Statements

• No assignments

– Hence no explicit flows

• Need to detect implicit flows

• Basic block is sequence of statements
that have one entry point and one exit
point

– Control in block always flows from entry
point to exit point
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Example Program

proc tm(x: array[1..10][1..10] of int class {x};

    var y: array[1..10][1..10] of int class {y});

var i, j: int {i};

begin

b1 i := 1;

b2 L2:   if i > 10 goto L7;

b3 j := 1;

b4 L4:   if j > 10 then goto L6;

b5      y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6:   i := i + 1; goto L2;

b7 L7:

end;
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Flow of Control

b1 b2 b7

b6
b3

b4

b5

i > n

i ! n

j > n

j ! n
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IFDs

• Idea: when two paths out of basic block,
implicit flow occurs
– Because information says which path to take

• When paths converge, either:
– Implicit flow becomes irrelevant; or

– Implicit flow becomes explicit

• Immediate forward dominator of basic block b
(written IFD(b)) is first basic block lying on all
paths of execution passing through b
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IFD Example

• In previous procedure:

– IFD(b1) = b2 one path

– IFD(b2) = b7 b2!b7 or b2!b3!b6!b2!b7

– IFD(b3) = b4 one path

– IFD(b4) = b6 b4!b6 or b4!b5!b6

– IFD(b5) = b4 one path

– IFD(b6) = b2 one path
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Requirements

• Bi is set of basic blocks along an execution path from
bi to IFD(bi)
– Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used
– Analogous to conditional expression

• Requirements for secure:
– All statements in each basic blocks are secure

– lub{ xi1, …, xin } !

                               glb{ y | y target of assignment in Bi }
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Example of Requirements

• Within each basic block:

b1: Low ! i b3: Low ! j  b6: lub{ Low, i } ! i

b5: lub{ x[i][j], i, j } ! y[j][i] }; lub{ Low, j } ! j

– Combining, lub{ x[i][j], i, j } ! y[j][i] }

– From declarations, true when lub{ x, i } ! y

• B2 = {b3, b4, b5, b6}

– Assignments to i, j, y[j][i]; conditional is i ! 10

– Requires i ! glb{ i, j, y[j][i] }

– From declarations, true when i ! y
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Example (continued)

• B4 = { b5 }

– Assignments to j, y[j][i]; conditional is j ! 10

– Requires j ! glb{ j, y[j][i] }

– From declarations, means i ! y

• Result:

– Combine lub{ x, i } ! y; i ! y; i ! y

– Requirement is lub{ x, i } ! y


