
ECS 289M Lecture 17

May 10, 2006

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Confinement Flow Model

• (I, O, confine, !)

– I = (SCI, !I, joinI)

– O set of entities

– !: O"O with (a, b) # ! (written a ! b) iff information can

flow from a to b

– for a # O, confine(a) = (aL, aU) # SCI"SCI with aL !I aU

• Interpretation: for a # O, if x !I aU, info can flow from x to a, and

if aL !I x, info can flow from a to x

• So aL lowest classification of info allowed to flow out of a, and

aU highest classification of info allowed to flow into a

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Assumptions, etc.

• Assumes: object can change security classes
– So, variable can take on security class of its data

• Object x has security class x currently

• Note transitivity not required

• If information can flow from a to b, then b
dominates a under ordering of policy I:
($ a, b # O)[a ! b % aL !I bU]

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Example 1

• SCI = { U, C, S, TS }, with U !I C, C !I S, and S !I TS

• a, b, c # O
– confine(a) = [C, C]

– confine(b) = [S, S]

– confine(c) = [TS, TS]

• Secure information flows: a ! b, a ! c, b ! c
– As aL !I bU, aL !I cU, bL !I cU

– Transitivity holds

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Example 2

• SCI, !I as in Example 1

• x, y, z # O
– confine(x) = [C, C]

– confine(y) = [S, S]

– confine(z) = [C, TS]

• Secure information flows: x ! y, x ! z, y ! z, z ! x,
z ! y

– As xL !I yU, xL !I zU, yL !I zU, zL !I xU, zL !I yU

– Transitivity does not hold

• y ! z and z ! x, but y ! x is false, because yL !I xU is false

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

Transitive Non-Lattice Policies

• Q = (SQ, !Q) is a quasi-ordered set when !Q is

transitive and reflexive over SQ

• How to handle information flow?

– Define a partially ordered set containing quasi-

ordered set

– Add least upper bound, greatest lower bound to

partially ordered set

– It’s a lattice, so apply lattice rules!

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

In Detail …

• $x # SQ: let f(x) = { y | y # SQ & y !Q x }
– Define SQP = { f(x) | x # SQ }

– Define !QP = { (x, y) | x, y # SQ & x ' y }

• SQP partially ordered set under !QP

• f preserves order, so y !Q x iff f(x) !QP f(y)

• Add upper, lower bounds
– SQP(= SQP) { SQ, * }

– Upper bound ub(x, y) = { z | z # SQP & x ' z & y ' z }

– Least upper bound lub(x, y) = +ub(x, y)

• Lower bound, greatest lower bound defined analogously

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

And the Policy Is …

• Now (SQP(, !QP) is lattice

• Information flow policy on quasi-ordered

set emulates that of this lattice!

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Nontransitive Flow Policies

• Government agency information flow

policy (on next slide)

• Entities public relations officers PRO,

analysts A, spymasters S

– confine(PRO) = { public, analysis }

– confine(A) = { analysis, top-level }

– confine(S) = { covert, top-level }

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Information Flow

• By confinement flow
model:
– PRO ! A, A ! PRO

– PRO ! S

– A ! S, S ! A

• Data cannot flow to
public relations officers;
not transitive
– S ! A, A ! PRO

– S ! PRO is false

top-level

analysis covert

public

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Transforming Into Lattice

• Rough idea: apply a special mapping to generate a

subset of the power set of the set of classes

– Done so this set is partially ordered

– Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation

– So it preserves non-orderings and non-transitivity of

elements corresponding to those of original set

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Dual Mapping

• R = (SCR, !R, joinR) reflexive info flow policy

• P = (SP, !P) ordered set

– Define dual mapping functions lR, hR: SCR!SP

• lR(x) = { x }

• hR(x) = { y | y # SCR & y !R x }

– SP contains subsets of SCR; !P subset relation

– Dual mapping function order preserving iff

($a, b # SCR)[a !R b , lR(a) !P hR(b)]

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Theorem

Dual mapping from reflexive info flow policy R

to ordered set P order-preserving

Proof sketch: all notation as before

(%) Let a !R b. Then a # lR(a), a # hR(b), so

lR(a) ' hR(b), or lR(a) !P hR(b)

(-) Let lR(a) !P hR(b). Then lR(a) ' hR(b). But

lR(a) = { a }, so a # hR(b), giving a !R b

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Info Flow Requirements

• Interpretation: let confine(x) = { xL, xU },

consider class y

– Information can flow from x to element of y
iff xL !R y, or lR(xL) ' hR(y)

– Information can flow from element of y to x
iff y !R xU, or lR(y) ' hR(xU)

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Revisit Government Example

• Information flow policy is R

• Flow relationships among classes are:

public !R public

public !R analysis analysis !R analysis

public !R covert covert !R covert

public !R top-level covert !R top-level

analysis !R top-level top-level !R top-level

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Dual Mapping of R

• Elements lR, hR:

lR(public) = { public }

hR(public) = { public }

lR(analysis) = { analysis }

hR(analysis) = { public, analysis }

lR(covert) = { covert }

hR(covert) = { public, covert }

lR(top-level) = { top-level }

hR(top-level) = { public, analysis, covert, top-level }

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

confine

• Let p be entity of type PRO, a of type A,
s of type S

• In terms of P (not R), we get:

– confine(p) = [{ public }, { public, analysis }]

– confine(a) = [{ analysis },

{ public, analysis, covert, top-level }]

– confine(s) = [{ covert },

{ public, analysis, covert, top-level }]

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

And the Flow Relations Are …

• p ! a as lR(p) ' hR(a)

– lR(p) = { public }

– hR(a) = { public, analysis, covert, top-level }

• Similarly: a ! p, p ! s, a ! s, s ! a

• But s ! p is false as lR(s) . hR(p)

– lR(s) = { covert }

– hR(p) = { public, analysis }

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Analysis

• (SP, !P) is a lattice, so it can be

analyzed like a lattice policy

• Dual mapping preserves ordering,

hence non-ordering and non-transitivity,

of original policy

– So results of analysis of (SP, !P) can be

mapped back into (SCR, !R, joinR)

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Compiler-Based Mechanisms

• Detect unauthorized information flows in a
program during compilation

• Analysis not precise, but secure
– If a flow could violate policy (but may not), it is

unauthorized

– No unauthorized path along which information
could flow remains undetected

• Set of statements certified with respect to
information flow policy if flows in set of
statements do not violate that policy

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Example

if x = 1 then y := a;

else y := b;

• Info flows from x and a to y, or from x

and b to y

• Certified only if x ! y and a ! y and b ! y

– Note flows for both branches must be true

unless compiler can determine that one

branch will never be taken

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Declarations

• Notation:

x: int class { A, B }

 means x is an integer variable with

security class at least lub{ A, B }, so lub{

A, B } ! x

• Distinguished classes Low, High

– Constants are always Low

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Input Parameters

• Parameters through which data passed

into procedure

• Class of parameter is class of actual

argument
ip: type class { ip }

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Output Parameters

• Parameters through which data passed out of

procedure

– If data passed in, called input/output parameter

• As information can flow from input parameters to

output parameters, class must include this:

op: type class { r1, …, rn }

where ri is class of ith input or input/output argument

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Example

proc sum(x: int class { A };

var out: int class { A, B });

begin

out := out + x;

end;

• Require x ! out and out ! out

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Array Elements

• Information flowing out:
… := a[i]

Value of i, a[i] both affect result, so
class is lub{ a[i], i }

• Information flowing in:
a[i] := …

• Only value of a[i] affected, so class is
a[i]

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Assignment Statements

x := y + z;

• Information flows from y, z to x, so this

requires lub{ y, z } ! x

More generally:

y := f(x1, …, xn)

• the relation lub{ x1, …, xn } ! y must

hold

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Compound Statements

x := y + z; a := b * c – x;

• First statement: lub{ y, z } ! x

• Second statement: lub{ b, c, x } ! a

• So, both must hold (i.e., be secure)

More generally:

S1; … Sn;

• Each individual Si must be secure

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Conditional Statements

if x + y < z then a := b else d := b * c – x; end

• The statement executed reveals information about x,

y, z, so lub{ x, y, z } ! glb{ a, d }

More generally:

if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure

• lub{ x1, …, xn } !

 glb{y | y target of assignment in S1, S2 }

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;

• Loop must terminate;

• S must be secure

• lub{ x1, …, xn } !

 glb{y | y target of assignment in S }

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

Goto Statements

• No assignments

– Hence no explicit flows

• Need to detect implicit flows

• Basic block is sequence of statements
that have one entry point and one exit
point

– Control in block always flows from entry
point to exit point

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Example Program

proc tm(x: array[1..10][1..10] of int class {x};

 var y: array[1..10][1..10] of int class {y});

var i, j: int {i};

begin

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5 y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:

end;

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 33

Flow of Control

b1 b2 b7

b6
b3

b4

b5

i > n

i ! n

j > n

j ! n

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 34

IFDs

• Idea: when two paths out of basic block,
implicit flow occurs
– Because information says which path to take

• When paths converge, either:
– Implicit flow becomes irrelevant; or

– Implicit flow becomes explicit

• Immediate forward dominator of basic block b
(written IFD(b)) is first basic block lying on all
paths of execution passing through b

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 35

IFD Example

• In previous procedure:

– IFD(b1) = b2 one path

– IFD(b2) = b7 b2!b7 or b2!b3!b6!b2!b7

– IFD(b3) = b4 one path

– IFD(b4) = b6 b4!b6 or b4!b5!b6

– IFD(b5) = b4 one path

– IFD(b6) = b2 one path

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 36

Requirements

• Bi is set of basic blocks along an execution path from
bi to IFD(bi)
– Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used
– Analogous to conditional expression

• Requirements for secure:
– All statements in each basic blocks are secure

– lub{ xi1, …, xin } !

 glb{ y | y target of assignment in Bi }

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 37

Example of Requirements

• Within each basic block:

b1: Low ! i b3: Low ! j b6: lub{ Low, i } ! i

b5: lub{ x[i][j], i, j } ! y[j][i] }; lub{ Low, j } ! j

– Combining, lub{ x[i][j], i, j } ! y[j][i] }

– From declarations, true when lub{ x, i } ! y

• B2 = {b3, b4, b5, b6}

– Assignments to i, j, y[j][i]; conditional is i ! 10

– Requires i ! glb{ i, j, y[j][i] }

– From declarations, true when i ! y

May 10, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 38

Example (continued)

• B4 = { b5 }

– Assignments to j, y[j][i]; conditional is j ! 10

– Requires j ! glb{ j, y[j][i] }

– From declarations, means i ! y

• Result:

– Combine lub{ x, i } ! y; i ! y; i ! y

– Requirement is lub{ x, i } ! y

