
ECS 289M Lecture 18

May 12, 2006

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Example Program

proc tm(x: array[1..10][1..10] of int class {x};

 var y: array[1..10][1..10] of int class {y});

var i, j: int {i};

begin

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5 y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:

end;

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Flow of Control

b
1 b

2
b

7

b
6

b
3

b
4

b
5

i > n

i ! n

j > n

j ! n

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

IFD Example

• In previous procedure:

– IFD(b1) = b2 one path

– IFD(b2) = b7 b2!b7 or b2!b3!b6!b2!b7

– IFD(b3) = b4 one path

– IFD(b4) = b6 b4!b6 or b4!b5!b6

– IFD(b5) = b4 one path

– IFD(b6) = b2 one path

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Example of Requirements

• Within each basic block:

b1: Low ! i b3: Low ! j b6: lub{ Low, i } ! i

b5: lub{ x[i][j], i, j } ! y[j][i] }; lub{ Low, j } ! j

– Combining, lub{ x[i][j], i, j } ! y[j][i] }

– From declarations, true when lub{ x, i } ! y

• B2 = {b3, b4, b5, b6}

– Assignments to i, j, y[j][i]; conditional is i ! 10

– Requires i ! glb{ i, j, y[j][i] }

– From declarations, true when i ! y

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

Example (continued)

• B4 = { b5 }

– Assignments to j, y[j][i]; conditional is j ! 10

– Requires j ! glb{ j, y[j][i] }

– From declarations, means i ! y

• Result:

– Combine lub{ x, i } ! y; i ! y; i ! y

– Requirement is lub{ x, i } ! y

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Procedure Calls

tm(a, b);

From previous slides, to be secure, lub{ x, i } ! y must hold

• In call, x corresponds to a, y to b

• Means that lub{ a, i } ! b, or a ! b

More generally:

proc pn(i1, …, im: int; var o1, …, on: int)

begin S end;

• S must be secure

• For all j and k, if ij ! ok, then xj ! yk

• For all j and k, if oj ! ok, then yj ! yk

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Exceptions

proc copy(x: int class { x };

 var y: int class Low)

var sum: int class { x };

 z: int class Low;

begin

 y := z := sum := 0;

 while z = 0 do begin

 sum := sum + x;

 y := y + 1;

 end

end

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Exceptions (cont)

• When sum overflows, integer overflow trap

– Procedure exits

– Value of x is MAXINT/y

– Info flows from y to x, but x ! y never checked

• Need to handle exceptions explicitly

– Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;

– Now info flows from sum to z, meaning sum ! z

– This is false (sum = { x } dominates z = Low)

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Infinite Loops

proc copy(x: int 0..1 class { x };

 var y: int 0..1 class Low)

begin

 y := 0;

 while x = 0 do

 (* nothing *);

 y := 1;

end

• If x = 0 initially, infinite loop

• If x = 1 initially, terminates with y set to 1

• No explicit flows, but implicit flow from x to y

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Semaphores

Use these constructs:
wait(x): if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;

– x is semaphore, a shared variable

– Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x

– Certification must take this into account!

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Flow Requirements

• Semaphores in signal irrelevant
– Don’t affect information flow in that process

• Statement S is a wait
– shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)

– fglb(S): glb of assignment targets following S

– So, requirement is shared(S) ! fglb(S)

• begin S1; … Sn end
– All Si must be secure

– For all i, shared(Si) ! fglb(Si)

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Example

begin

 x := y + z; (* S1 *)

 wait(sem); (* S2 *)

 a := b * c – x; (* S3 *)

end

• Requirements:
– lub{ y, z } ! x

– lub{ b, c, x } ! a

– sem ! a
• Because fglb(S2) = a and shared(S2) = sem

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Concurrent Loops

• Similar, but wait in loop affects all statements in loop

– Because if flow of control loops, statements in loop before

wait may be executed after wait

• Requirements

– Loop terminates

– All statements S1, …, Sn in loop secure

– lub{ shared(S1), …, shared(Sn) } ! glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Loop Example

while i < n do begin

 a[i] := item; (* S1 *)

 wait(sem); (* S2 *)

 i := i + 1; (* S3 *)

end

• Conditions for this to be secure:
– Loop terminates, so this condition met

– S1 secure if lub{ i, item } ! a[i]

– S2 secure if sem ! i and sem ! a[i]

– S3 trivially secure

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

cobegin/coend

cobegin

 x := y + z; (* S1 *)

 a := b * c – y; (* S2 *)

coend

• No information flow among statements

– For S1, lub{ y, z } ! x

– For S2, lub{ b, c, y } ! a

• Security requirement is both must hold

– So this is secure if lub{ y, z } ! x " lub{ b, c, y } ! a

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Soundness

• Above exposition intuitive

• Can be made rigorous:

– Express flows as types

– Equate certification to correct use of types

– Checking for valid information flows same

as checking types conform to semantics

imposed by security policy

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Execution-Based Mechanisms

• Detect and stop flows of information that violate

policy

– Done at run time, not compile time

• Obvious approach: check explicit flows

– Problem: assume for security, x ! y

if x = 1 then y := a;

– When x !"1, x = High, y = Low, a = Low, appears okay—but

implicit flow violates condition!

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Fenton’s Data Mark Machine

• Each variable has an associated class

• Program counter (PC) has one too

• Idea: branches are assignments to PC,
so you can treat implicit flows as explicit
flows

• Stack-based machine, so everything
done in terms of pushing onto and
popping from a program stack

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Instruction Description

• skip means instruction not executed

• push(x, x) means push variable x and

its security class x onto program stack

• pop(x, x) means pop top value and

security class from program stack,

assign them to variable x and its

security class x respectively

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Instructions

• x := x + 1 (increment)
– Same as:

if PC ! x then x := x + 1 else skip

• if x = 0 then goto n else x := x – 1 (branch and
save PC on stack)
– Same as:

if x = 0 then begin

push(PC, PC); PC := lub{PC, x}; PC := n;

 end else if PC ! x then

x := x - 1

else

skip;

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

More Instructions

• if’ x = 0 then goto n else x := x – 1 (branch
without saving PC on stack)
– Same as:

if x = 0 then

if x ! PC then PC := n else skip

else

if PC ! x then x := x - 1 else skip

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

More Instructions

• return (go to just after last if)
– Same as:

pop(PC, PC);

• halt (stop)
– Same as:

if program stack empty then halt

– Note stack empty to prevent user obtaining

information from it after halting

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Example Program

1 if x = 0 then goto 4 else x := x - 1

2 if z = 0 then goto 6 else z := z - 1

3 halt

4 z := z - 1

5 return

6 y := y - 1

7 return

• Initially x = 0 or x = 1, y = 0, z = 0

• Program copies value of x to y

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Example Execution

x y z PC PC stack check

1 0 0 1 Low —

0 0 0 2 Low — Low ! x

0 0 0 6 z (3, Low)

0 1 0 7 z (3, Low) PC ! y

0 1 0 3 Low —

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Handling Errors

• Ignore statement that causes error, but

continue execution

– If aborted or a visible exception taken, user

could deduce information

– Means errors cannot be reported unless

user has clearance at least equal to that of

the information causing the error

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Variable Classes

• Up to now, classes fixed

– Check relationships on assignment, etc.

• Consider variable classes

– Fenton’s Data Mark Machine does this for

PC

– On assignment of form y := f(x1, …, xn), y

changed to lub{ x1, …, xn }

– Need to consider implicit flows, also

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Example Program

(* Copy value from x to y
 * Initially, x is 0 or 1 *)
proc copy(x: int class { x };

var y: int class { y })
var z: int class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

• z changes when z assigned to

• Assume y < x

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Analysis of Example

• x = 0
– z := 0 sets z to Low

– if x = 0 then z := 1 sets z to 1 and z to x

– So on exit, y = 0

• x = 1
– z := 0 sets z to Low

– if z = 0 then y := 1 sets y to 1 and checks that
lub{Low, z} ! y

– So on exit, y = 1

• Information flowed from x to y even though y < x

May 12, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Handling This (1)

• Fenton’s Data Mark Machine detects

implicit flows violating certification rules

