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Example Program

proc tm(x: array[1..10][1..10] of int class {x};

    var y: array[1..10][1..10] of int class {y});

var i, j: int {i};

begin

b1 i := 1;

b2 L2:   if i > 10 goto L7;

b3 j := 1;

b4 L4:   if j > 10 then goto L6;

b5      y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6:   i := i + 1; goto L2;

b7 L7:

end;
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Flow of Control
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IFD Example

• In previous procedure:

– IFD(b1) = b2 one path

– IFD(b2) = b7 b2!b7 or b2!b3!b6!b2!b7

– IFD(b3) = b4 one path

– IFD(b4) = b6 b4!b6 or b4!b5!b6

– IFD(b5) = b4 one path

– IFD(b6) = b2 one path
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Example of Requirements

• Within each basic block:

b1: Low ! i b3: Low ! j  b6: lub{ Low, i } ! i

b5: lub{ x[i][j], i, j } ! y[j][i] }; lub{ Low, j } ! j

– Combining, lub{ x[i][j], i, j } ! y[j][i] }

– From declarations, true when lub{ x, i } ! y

• B2 = {b3, b4, b5, b6}

– Assignments to i, j, y[j][i]; conditional is i ! 10

– Requires i ! glb{ i, j, y[j][i] }

– From declarations, true when i ! y
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Example (continued)

• B4 = { b5 }

– Assignments to j, y[j][i]; conditional is j ! 10

– Requires j ! glb{ j, y[j][i] }

– From declarations, means i ! y

• Result:

– Combine lub{ x, i } ! y; i ! y; i ! y

– Requirement is lub{ x, i } ! y
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Procedure Calls

tm(a, b);

From previous slides, to be secure, lub{ x, i } ! y must hold

• In call, x corresponds to a, y to b

• Means that lub{ a, i } ! b, or a ! b

More generally:

proc pn(i1, …, im: int; var o1, …, on: int)

begin S end;

• S must be secure

• For all j and k, if ij ! ok, then xj ! yk

• For all j and k, if oj ! ok, then  yj ! yk
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Exceptions

proc copy(x: int class { x };

                var y: int class Low)

var sum: int class { x };

    z: int class Low;

begin

     y := z := sum := 0;

     while z = 0 do begin

          sum := sum + x;

          y := y + 1;

     end

end
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Exceptions (cont)

• When sum overflows, integer overflow trap

– Procedure exits

– Value of x is MAXINT/y

– Info flows from y to x, but x ! y never checked

• Need to handle exceptions explicitly

– Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;

– Now info flows from sum to z, meaning sum ! z

– This is false (sum = { x } dominates z = Low)
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Infinite Loops

proc copy(x: int 0..1 class { x };

                var y: int 0..1 class Low)

begin

     y := 0;

     while x = 0 do

          (* nothing *);

     y := 1;

end

• If x = 0 initially, infinite loop

• If x = 1 initially, terminates with y set to 1

• No explicit flows, but implicit flow from x to y
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Semaphores

Use these constructs:
wait(x):   if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;

– x is semaphore, a shared variable

– Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x

– Certification must take this into account!
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Flow Requirements

• Semaphores in signal irrelevant
– Don’t affect information flow in that process

• Statement S is a wait
– shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)

– fglb(S): glb of assignment targets following S

– So, requirement is shared(S) ! fglb(S)

• begin S1; … Sn end
– All Si must be secure

– For all i, shared(Si) ! fglb(Si)
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Example

begin

    x := y + z;       (* S1 *)

    wait(sem);        (* S2 *)

    a := b * c – x;   (* S3 *)

end

• Requirements:
– lub{ y, z } ! x

– lub{ b, c, x } ! a

– sem ! a
• Because fglb(S2) = a and shared(S2) = sem
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Concurrent Loops

• Similar, but wait in loop affects all statements in loop

– Because if flow of control loops, statements in loop before

wait may be executed after wait

• Requirements

– Loop terminates

– All statements S1, …, Sn in loop secure

– lub{ shared(S1), …, shared(Sn) } ! glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop
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Loop Example

while i < n do begin

    a[i] := item;    (* S1 *)

    wait(sem);       (* S2 *)

    i := i + 1;      (* S3 *)

end

• Conditions for this to be secure:
– Loop terminates, so this condition met

– S1 secure if lub{ i, item } ! a[i]

– S2 secure if sem ! i and sem ! a[i]

– S3 trivially secure
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cobegin/coend

cobegin

     x := y + z;       (* S1 *)

     a := b * c – y;   (* S2 *)

coend

• No information flow among statements

– For S1, lub{ y, z } ! x

– For S2, lub{ b, c, y } ! a

• Security requirement is both must hold

– So this is secure if lub{ y, z } ! x " lub{ b, c, y } ! a



May 12, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 17

Soundness

• Above exposition intuitive

• Can be made rigorous:

– Express flows as types

– Equate certification to correct use of types

– Checking for valid information flows same

as checking types conform to semantics

imposed by security policy
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Execution-Based Mechanisms

• Detect and stop flows of information that violate

policy

– Done at run time, not compile time

• Obvious approach: check explicit flows

– Problem: assume for security, x ! y

if x = 1 then y := a;

– When x !"1, x = High, y = Low, a = Low, appears okay—but

implicit flow violates condition!
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Fenton’s Data Mark Machine

• Each variable has an associated class

• Program counter (PC) has one too

• Idea: branches are assignments to PC,
so you can treat implicit flows as explicit
flows

• Stack-based machine, so everything
done in terms of pushing onto and
popping from a program stack
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Instruction Description

• skip means instruction not executed

• push(x, x) means push variable x and

its security class x onto program stack

• pop(x, x) means pop top value and

security class from program stack,

assign them to variable x and its

security class x respectively
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Instructions

•  x := x + 1 (increment)
– Same as:

if PC ! x then x := x + 1 else skip

•  if x = 0 then goto n else x := x – 1 (branch and
save PC on stack)
– Same as:

if x = 0 then begin

push(PC, PC); PC := lub{PC, x}; PC := n;

  end else if PC ! x then

x := x - 1

else

skip;
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More Instructions

•  if’ x = 0 then goto n else x := x – 1 (branch
without saving PC on stack)
– Same as:

if x = 0 then

if x ! PC then PC := n else skip

else

if PC ! x then x := x - 1 else skip
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More Instructions

•  return (go to just after last if)
– Same as:

pop(PC, PC);

•  halt (stop)
– Same as:

if program stack empty then halt

– Note stack empty to prevent user obtaining

information from it after halting
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Example Program

1 if x = 0 then goto 4 else x := x - 1

2 if z = 0 then goto 6 else z := z - 1

3 halt

4 z := z - 1

5 return

6 y := y - 1

7 return

• Initially x = 0 or x = 1, y = 0, z = 0

• Program copies value of x to y
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Example Execution

x y z PC PC stack check

1 0 0 1 Low —

0 0 0 2 Low — Low ! x

0 0 0 6 z (3, Low)

0 1 0 7 z (3, Low) PC ! y

0 1 0 3 Low —
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Handling Errors

• Ignore statement that causes error, but

continue execution

– If aborted or a visible exception taken, user

could deduce information

– Means errors cannot be reported unless

user has clearance at least equal to that of

the information causing the error
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Variable Classes

• Up to now, classes fixed

– Check relationships on assignment, etc.

• Consider variable classes

– Fenton’s Data Mark Machine does this for

PC

– On assignment of form y := f(x1, …, xn), y

changed to lub{ x1, …, xn }

– Need to consider implicit flows, also
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Example Program

(* Copy value from x to y
 * Initially, x is 0 or 1 *)
proc copy(x: int class { x };

var y: int class { y })
var z: int class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

• z changes when z assigned to

• Assume y <  x
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Analysis of Example

• x = 0
–  z := 0 sets z to Low

–  if x = 0 then z := 1 sets z to 1 and z to x

–  So on exit, y = 0

• x = 1
–  z := 0 sets z to Low

–  if z = 0 then y := 1 sets y to 1 and checks that
lub{Low, z} ! y

–  So on exit, y = 1

• Information flowed from x to y even though y < x
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Handling This (1)

• Fenton’s Data Mark Machine detects

implicit flows violating certification rules


