
 ECS 289M Lecture 21

May 19, 2006

May 19, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 2

Covert Channels

• Shared resources as communication paths

• Covert storage channel uses attribute of

shared resource

– Disk space, message size, etc.

• Covert timing channel uses temporal or

ordering relationship among accesses to

shared resource

– Regulating CPU usage, order of reads on disk
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Example Storage Channel

• Processes p, q not allowed to communicate
– But they share a file system!

• Communications protocol:
– p sends a bit by creating a file called 0 or 1, then a

second file called send
• p waits until send is deleted before repeating to send

another bit

– q waits until file send exists, then looks for file 0 or
1; whichever exists is the bit

• q then deletes 0, 1, and send and waits until send is
recreated before repeating to read another bit
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Example Timing Channel

• System has two VMs
– Sending machine S, receiving machine R

• To send:
– For 0, S immediately relinquishes CPU

• For example, run a process that instantly blocks

– For 1, S  uses full quantum
• For example, run a CPU-intensive process

• R measures how quickly it gets CPU
– Uses real-time clock to measure intervals between

access to shared resource (CPU)
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Example Covert Channel

• Uses ordering of events; does not use clock

• Two VMs sharing disk cylinders 100 to 200

– SCAN algorithm schedules disk accesses

– One VM is High (H), other is Low (L)

• Idea: L will issue requests for blocks on

cylinders 139 and 161 to be read

– If read as 139, then 161, it’s a 1 bit

– If read as 161, then 139, it’s a 0 bit
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How It Works

• L issues read for data on cylinder 150
– Relinquishes CPU when done; arm now at 150

• H runs, issues read for data on cylinder 140
– Relinquishes CPU when done; arm now at 140

• L runs, issues read for data on cylinders 139
and 161
– Due to SCAN, reads 139 first, then 161

– This corresponds to a 1

• To send a 0, H would have issued read for
data on cylinder 160
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Analysis

• Timing or storage?
– Usual definition ! storage (no timer, clock)

• Modify example to include timer
– L uses this to determine how long requests take to

complete

– Time to seek to 139 < time to seek to 161 ! 1;
otherwise, 0

• Channel works same way
– Suggests it’s a timing channel; hence our

definition
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Noisy vs. Noiseless

• Noiseless: covert channel uses
resource available only to sender,
receiver

• Noisy: covert channel uses resource
available to others as well as to sender,
receiver

– Idea is that others can contribute
extraneous information that receiver must
filter out to “read” sender’s communication
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Key Properties

• Existence: the covert channel can be used to

send/receive information

• Bandwidth: the rate at which information can

be sent along the channel

• Goal of analysis: establish these properties

for each channel

– If you can eliminate the channel, great!

– If not, reduce bandwidth as much as possible
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Step #1: Detection

• Manner in which resource is shared

controls who can send, receive using

that resource

– Noninterference

– Shared Resource Matrix Methodology

– Information flow analysis

– Covert flow trees
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Noninterference

• View “read”, “write” as instances of
information transfer

• Then two processes can communicate
if information can be transferred
between them, even in the absence of a
direct communication path

– A covert channel

– Also sounds like interference …
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Example: SAT

• Secure Ada Target, multilevel security policy

• Approach:
– "(i, l) removes all instructions issued by subjects

dominated by level l from instruction stream i

– A(i, #) state resulting from execution of i on state #

– #.v(s) describes subject s’s view of state #

• System is noninterference-secure iff for all
instruction sequences i, subjects s with
security level l(s), states #,

A("(i, l(s)), #).v(s) = A(i, #).v(s)
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Theorem

• Version of the Unwinding Theorem

• Let $ be set of system states. A specification
is noninterference-secure if, for each subject
s at security level l(s), there exists an
equivalence relation %: $&$ such that
– for #1, #2 ' $, when #1 % #2, #1.v(s) = #2.v(s)

– for #1, #2 ' $ and any instruction i, when #1 % #2,
A(i, #1) % A(i, #2)

– for # ' $ and instruction stream i, if "(i, l(s)) is
empty, A("(i, l(s)), #).v(s) = #.v(s)
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Intuition

• System is noninterference-secure if:

– Equivalent states have the same view for

each subject

– View remains unchanged if any instruction

is executed

– Instructions from higher-level subjects do

not affect the state from the viewpoint of

the lower-level subjects
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Analysis of SAT

• Focus on object creation instruction and
readable object set

• In these specifications:

– s subject with security level l(s)

– o object with security level l(o), type ((o)

– # current state

– Set of existing objects listed in a global
object table T(#)
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Specification 1

• object_create:

[ #) = object_create(s,o,l(o),((o),#) * #) !"# ]

+

[ o , T(#) * l(s) ! l(o) ]

• The create succeeds if, and only if, the object

does not yet exist and the clearance of the

object will dominate the clearance of its creator

– In accord with the “writes up okay” idea
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Specification 2

• readable object set: set of existing objects
that subject could read
– can_read(s, o, #) true if in state #, o is of a type

that s can read (ignoring permissions)

• o , readable(s, #) + [ o , T(#) -

¬(l(o) ! l(s)) - ¬(can_read(s, o, #))]

• Can’t read a nonexistent object, one with a
security level that  the subject’s security level
does not dominate, or object of the wrong
type
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Specification 3

• SAT enforces tranquility

– Adding object to readable set means creating new

object

• Add to readable set:

[o , readable(s, #) * o ' readable(s, #))] + [#) =

object_create(s,o,l(o),((o),#) * o , T(#) * l(s)) !

l(o) ! l(s) * can_read(s, o, #))]

• Says object must be created, levels and

discretionary access controls set properly
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Check for Covert Channels

• #1, #2 the same except:

– o exists only in latter

– ¬(l(o) ! l(s))

• Specification 2:
– o , readable(s, #1) { o doesn’t exist in #1}

– o , readable(s, #2) { ¬(l(o) ! l(s)) }

• Thus #1 % #2

– Condition 1 of theorem holds
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Continue Analysis

• s) issues command to create o with:

– l(o) = l(s)

– of type with can_read(s, o, #1))

• #1) state after object_create(s), o, l(o), ((o), #1)

• Specification 1

– #1) differs from #1 with o in T(#1)

• New entry satisfies:

– can_read(s, o, #1))

– l(s)) ! l(o) ! l(s), where s) created o
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Continue Analysis

• o exists in #2 so:

#2) = object_create(s), o, #2) = #2

• But this means

¬[ A(object_create(s), o, l(o), ((o), #2), #2) %
A(object_create(s), o, l(o), ((o), #1), #1) ]

– Because create fails in #2 but succeeds in #1

• So condition 2 of theorem fails

• This implies a covert channel as system is not
noninterference-secure
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Example Exploit

• To send 1:

– High subject creates high object

– Recipient tries to create same object but at low

• Creation fails, but no indication given

– Recipient gives different subject type permission

to read, write object

• Again fails, but no indication given

– Subject writes 1 to object, reads it

• Read returns nothing



May 19, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 23

Example Exploit

• To send 0:

– High subject creates nothing

– Recipient tries to create same object but at low

• Creation succeeds as object does not exist

– Recipient gives different subject type permission

to read, write object

• Again succeeds

– Subject writes 1 to object, reads it

• Read returns 1
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Use

• Can analyze covert storage channels

– Noninterference techniques reason in

terms of security levels (attributes of

objects)

• Covert timing channels much harder

– You would have to make ordering an

attribute of the objects in some way
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SRMM

• Shared Resource Matrix Methodology

• Goal: identify shared channels, how they are
shared

• Steps:
– Identify all shared resources, their visible attributes

[rows]

– Determine operations that reference (read), modify
(write) resource [columns]

– Contents of matrix show how operation accesses
the resource
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Example

• Multilevel security model

• File attributes:
– existence, owner, label, size

• File manipulation operations:
– read, write, delete, create

– create succeeds if file does not exist; gets creator
as owner, creator’s label

– others require file exists, appropriate labels

• Subjects:
– High, Low
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Shared Resource Matrix

MMMRsize

MRRRlabel

MRowner

R, MR, MRRexistence

createdeletewriteread
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Covert Storage Channel

• Properties that must hold for covert
storage channel:

1. Sending, receiving processes have access
to same attribute of shared object;

2. Sender can modify that attribute;

3. Receiver can reference that attribute; and

4. Mechanism for starting processes,
properly sequencing their accesses to
resource
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Example

• Consider attributes with both R, M in rows

• Let High be sender, Low receiver

• create operation both references, modifies

existence attribute

– Low can use this due to semantics of create

• Need to arrange for proper sequencing

accesses to existence attribute of file (shared

resource)

May 19, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 30

Use of Channel

– 3 files: ready, done, 1bit

– Low creates ready at High level

– High checks that file exists
– If so, to send 1, it creates 1bit; to send 0, skip

– Delete ready, create done at High level

– Low tries to create done at High level
– On failure, High is done

– Low tries to create 1bit at level High

– Low deletes done, creates ready at High level
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Covert Timing Channel

• Properties that must hold for covert timing
channel:
1.Sending, receiving processes have access to

same attribute of shared object;

2.Sender, receiver have access to a time reference
(wall clock, timer, event ordering, …);

3.Sender can control timing of detection of change
to that attribute by receiver; and

4.Mechanism for starting processes, properly
sequencing their accesses to resource
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Example

• Revisit variant of KVM/370 channel
– Sender, receiver can access ordering of requests

by disk arm scheduler (attribute)

– Sender, receiver have access to the ordering of
the requests (time reference)

– High can control ordering of requests of Low
process by issuing cylinder numbers to position
arm appropriately (timing of detection of change)

– So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired
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Uses of SRM Methodology

• Applicable at many stages of software life
cycle model
– Flexbility is its strength

• Used to analyze Secure Ada Target
– Participants manually constructed SRM from flow

analysis of SAT model

– Took transitive closure

– Found 2 covert channels
• One used assigned level attribute, another assigned type

attribute
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Summary

• Methodology comprehensive but incomplete

– How to identify shared resources?

– What operations access them and how?

• Incompleteness a benefit

– Allows use at different stages of software

engineering life cycle

• Incompleteness a problem

– Makes use of methodology sensitive to particular

stage of software development


