
 ECS 289M Lecture 21

May 19, 2006

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Covert Channels

• Shared resources as communication paths

• Covert storage channel uses attribute of

shared resource

– Disk space, message size, etc.

• Covert timing channel uses temporal or

ordering relationship among accesses to

shared resource

– Regulating CPU usage, order of reads on disk

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Example Storage Channel

• Processes p, q not allowed to communicate
– But they share a file system!

• Communications protocol:
– p sends a bit by creating a file called 0 or 1, then a

second file called send
• p waits until send is deleted before repeating to send

another bit

– q waits until file send exists, then looks for file 0 or
1; whichever exists is the bit

• q then deletes 0, 1, and send and waits until send is
recreated before repeating to read another bit

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Example Timing Channel

• System has two VMs
– Sending machine S, receiving machine R

• To send:
– For 0, S immediately relinquishes CPU

• For example, run a process that instantly blocks

– For 1, S uses full quantum
• For example, run a CPU-intensive process

• R measures how quickly it gets CPU
– Uses real-time clock to measure intervals between

access to shared resource (CPU)

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Example Covert Channel

• Uses ordering of events; does not use clock

• Two VMs sharing disk cylinders 100 to 200

– SCAN algorithm schedules disk accesses

– One VM is High (H), other is Low (L)

• Idea: L will issue requests for blocks on

cylinders 139 and 161 to be read

– If read as 139, then 161, it’s a 1 bit

– If read as 161, then 139, it’s a 0 bit

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

How It Works

• L issues read for data on cylinder 150
– Relinquishes CPU when done; arm now at 150

• H runs, issues read for data on cylinder 140
– Relinquishes CPU when done; arm now at 140

• L runs, issues read for data on cylinders 139
and 161
– Due to SCAN, reads 139 first, then 161

– This corresponds to a 1

• To send a 0, H would have issued read for
data on cylinder 160

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Analysis

• Timing or storage?
– Usual definition ! storage (no timer, clock)

• Modify example to include timer
– L uses this to determine how long requests take to

complete

– Time to seek to 139 < time to seek to 161 ! 1;
otherwise, 0

• Channel works same way
– Suggests it’s a timing channel; hence our

definition

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Noisy vs. Noiseless

• Noiseless: covert channel uses
resource available only to sender,
receiver

• Noisy: covert channel uses resource
available to others as well as to sender,
receiver

– Idea is that others can contribute
extraneous information that receiver must
filter out to “read” sender’s communication

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Key Properties

• Existence: the covert channel can be used to

send/receive information

• Bandwidth: the rate at which information can

be sent along the channel

• Goal of analysis: establish these properties

for each channel

– If you can eliminate the channel, great!

– If not, reduce bandwidth as much as possible

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Step #1: Detection

• Manner in which resource is shared

controls who can send, receive using

that resource

– Noninterference

– Shared Resource Matrix Methodology

– Information flow analysis

– Covert flow trees

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Noninterference

• View “read”, “write” as instances of
information transfer

• Then two processes can communicate
if information can be transferred
between them, even in the absence of a
direct communication path

– A covert channel

– Also sounds like interference …

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Example: SAT

• Secure Ada Target, multilevel security policy

• Approach:
– "(i, l) removes all instructions issued by subjects

dominated by level l from instruction stream i

– A(i, #) state resulting from execution of i on state #

– #.v(s) describes subject s’s view of state #

• System is noninterference-secure iff for all
instruction sequences i, subjects s with
security level l(s), states #,

A("(i, l(s)), #).v(s) = A(i, #).v(s)

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Theorem

• Version of the Unwinding Theorem

• Let $ be set of system states. A specification
is noninterference-secure if, for each subject
s at security level l(s), there exists an
equivalence relation %: $&$ such that
– for #1, #2 ' $, when #1 % #2, #1.v(s) = #2.v(s)

– for #1, #2 ' $ and any instruction i, when #1 % #2,
A(i, #1) % A(i, #2)

– for # ' $ and instruction stream i, if "(i, l(s)) is
empty, A("(i, l(s)), #).v(s) = #.v(s)

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Intuition

• System is noninterference-secure if:

– Equivalent states have the same view for

each subject

– View remains unchanged if any instruction

is executed

– Instructions from higher-level subjects do

not affect the state from the viewpoint of

the lower-level subjects

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Analysis of SAT

• Focus on object creation instruction and
readable object set

• In these specifications:

– s subject with security level l(s)

– o object with security level l(o), type ((o)

– # current state

– Set of existing objects listed in a global
object table T(#)

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Specification 1

• object_create:

[#) = object_create(s,o,l(o),((o),#) * #) !"#]

+

[o , T(#) * l(s) ! l(o)]

• The create succeeds if, and only if, the object

does not yet exist and the clearance of the

object will dominate the clearance of its creator

– In accord with the “writes up okay” idea

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Specification 2

• readable object set: set of existing objects
that subject could read
– can_read(s, o, #) true if in state #, o is of a type

that s can read (ignoring permissions)

• o , readable(s, #) + [o , T(#) -

¬(l(o) ! l(s)) - ¬(can_read(s, o, #))]

• Can’t read a nonexistent object, one with a
security level that the subject’s security level
does not dominate, or object of the wrong
type

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Specification 3

• SAT enforces tranquility

– Adding object to readable set means creating new

object

• Add to readable set:

[o , readable(s, #) * o ' readable(s, #))] + [#) =

object_create(s,o,l(o),((o),#) * o , T(#) * l(s)) !

l(o) ! l(s) * can_read(s, o, #))]

• Says object must be created, levels and

discretionary access controls set properly

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Check for Covert Channels

• #1, #2 the same except:

– o exists only in latter

– ¬(l(o) ! l(s))

• Specification 2:
– o , readable(s, #1) { o doesn’t exist in #1}

– o , readable(s, #2) { ¬(l(o) ! l(s)) }

• Thus #1 % #2

– Condition 1 of theorem holds

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Continue Analysis

• s) issues command to create o with:

– l(o) = l(s)

– of type with can_read(s, o, #1))

• #1) state after object_create(s), o, l(o), ((o), #1)

• Specification 1

– #1) differs from #1 with o in T(#1)

• New entry satisfies:

– can_read(s, o, #1))

– l(s)) ! l(o) ! l(s), where s) created o

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Continue Analysis

• o exists in #2 so:

#2) = object_create(s), o, #2) = #2

• But this means

¬[A(object_create(s), o, l(o), ((o), #2), #2) %
A(object_create(s), o, l(o), ((o), #1), #1)]

– Because create fails in #2 but succeeds in #1

• So condition 2 of theorem fails

• This implies a covert channel as system is not
noninterference-secure

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Example Exploit

• To send 1:

– High subject creates high object

– Recipient tries to create same object but at low

• Creation fails, but no indication given

– Recipient gives different subject type permission

to read, write object

• Again fails, but no indication given

– Subject writes 1 to object, reads it

• Read returns nothing

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Example Exploit

• To send 0:

– High subject creates nothing

– Recipient tries to create same object but at low

• Creation succeeds as object does not exist

– Recipient gives different subject type permission

to read, write object

• Again succeeds

– Subject writes 1 to object, reads it

• Read returns 1

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Use

• Can analyze covert storage channels

– Noninterference techniques reason in

terms of security levels (attributes of

objects)

• Covert timing channels much harder

– You would have to make ordering an

attribute of the objects in some way

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

SRMM

• Shared Resource Matrix Methodology

• Goal: identify shared channels, how they are
shared

• Steps:
– Identify all shared resources, their visible attributes

[rows]

– Determine operations that reference (read), modify
(write) resource [columns]

– Contents of matrix show how operation accesses
the resource

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Example

• Multilevel security model

• File attributes:
– existence, owner, label, size

• File manipulation operations:
– read, write, delete, create

– create succeeds if file does not exist; gets creator
as owner, creator’s label

– others require file exists, appropriate labels

• Subjects:
– High, Low

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Shared Resource Matrix

MMMRsize

MRRRlabel

MRowner

R, MR, MRRexistence

createdeletewriteread

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Covert Storage Channel

• Properties that must hold for covert
storage channel:

1. Sending, receiving processes have access
to same attribute of shared object;

2. Sender can modify that attribute;

3. Receiver can reference that attribute; and

4. Mechanism for starting processes,
properly sequencing their accesses to
resource

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Example

• Consider attributes with both R, M in rows

• Let High be sender, Low receiver

• create operation both references, modifies

existence attribute

– Low can use this due to semantics of create

• Need to arrange for proper sequencing

accesses to existence attribute of file (shared

resource)

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Use of Channel

– 3 files: ready, done, 1bit

– Low creates ready at High level

– High checks that file exists
– If so, to send 1, it creates 1bit; to send 0, skip

– Delete ready, create done at High level

– Low tries to create done at High level
– On failure, High is done

– Low tries to create 1bit at level High

– Low deletes done, creates ready at High level

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

Covert Timing Channel

• Properties that must hold for covert timing
channel:
1.Sending, receiving processes have access to

same attribute of shared object;

2.Sender, receiver have access to a time reference
(wall clock, timer, event ordering, …);

3.Sender can control timing of detection of change
to that attribute by receiver; and

4.Mechanism for starting processes, properly
sequencing their accesses to resource

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Example

• Revisit variant of KVM/370 channel
– Sender, receiver can access ordering of requests

by disk arm scheduler (attribute)

– Sender, receiver have access to the ordering of
the requests (time reference)

– High can control ordering of requests of Low
process by issuing cylinder numbers to position
arm appropriately (timing of detection of change)

– So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 33

Uses of SRM Methodology

• Applicable at many stages of software life
cycle model
– Flexbility is its strength

• Used to analyze Secure Ada Target
– Participants manually constructed SRM from flow

analysis of SAT model

– Took transitive closure

– Found 2 covert channels
• One used assigned level attribute, another assigned type

attribute

May 19, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 34

Summary

• Methodology comprehensive but incomplete

– How to identify shared resources?

– What operations access them and how?

• Incompleteness a benefit

– Allows use at different stages of software

engineering life cycle

• Incompleteness a problem

– Makes use of methodology sensitive to particular

stage of software development

