
 ECS 289M Lecture 22

May 22, 2006

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Information Flow Analysis

• Recall compiler-based information flow

analysis

– Exception depends upon value of variable

• Covert channel, as exception (or lack of it)

communicates information about value

– Synchronization, IPC operations

• One process sends message or blocks on

receive; other process can detect this

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Source Code Analysis

• Covert channels arise when processes

can view or alter kernel variables

– So identify variables that processes can

refer to directly or view, alter indirectly

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Step 1

• Identify kernel functions, processes

– Processes are those that function at

highest level of privilege, perform actions

for ordinary users

• Not administrative processes, functions

– Administrators don’t need to leak anything;

they have privileges to do it directly

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

Step 2

• Identify kernel variables accessible to
user processes; processes must:

– Control how variable is altered

– Detect that variable has been altered

• Specific criteria:

– Value of variable obtained from system call

– Calling process can detect two or more
different states of that variable

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

Example

x := f(a, b); y := f(a, b);
if x = 0 then if y = 0 then

x := x + 10; z := 1;
return x; else

z := 0;
return z;

x directly visible as returned directly

y indirectly visible as not returned directly,

but its value can be deduced from z,

which is returned

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Caveats

• Find all data flows through kernel
– Need to detect all data and functional

dependencies

• Record or structure
– Consider each of its elements

• Array of structures
– Consider each element of each structure, and

array as a whole

• Pointers must be included
– When point to variables in question

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

Step 3

• Analyze variables looking for covert channels

– Method similar to that of deriving SRM

– Results in terms of operations that alter, view

variables

• Only alter or only view: ignore operation

• Covert channel may be associated with many

variables

• Variable may be associated with many covert

channels

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Application

• Analyze Secure Xenix kernel

• Found two variables involved in covert
channels

• 4 classes of generic channels identified
– One exploitable only when system failed

– One could not be eliminated without changing
semantics of regular Xenix

• Concluded that informal analysis would not
make all associations of variables, system
calls

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Use of SRMM

• Examined Secure Xenix top-level

specification

• SRM method failed to spot several

covert channels

– Not surprising, as the TLS did not specify

data structures in which covert channels

were found

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Covert Flow Trees

• Idea: model flow of information through
shared resource with tree

• Tree-structured representation of
sequence of operations that move
information from one process to another

• 5 types of nodes: goal symbols,
operation symbol, failure symbol, and
symbol, or symbol

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Goal Symbols

• Specify states that must exist for information

to flow

– Modification goal: reached when attribute modified

– Recognition goal: reached when attribute

modification is detected

– Direct recognition goal: reached when subject can

detect change of attribute by direct reference or

calling function that returns it

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Goal Symbols

– Inferred recognition goal: reached when subject

can detect change of attribute without direct

reference or calling function that returns it

– Inferred-via goal: reached when information

passed from one attribute to other attributes using

specified system call

– Recognize-new-state goal: reached when attribute

modified when information passed using the

variable is specified by inferred-via goal

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

Other Symbols

• Operation symbol
– Represents primitive operation

• Failure symbol
– Information cannot be sent along this path

• And symbol
– Reached when for all children (1) child is an

operation; and (2) if child is a goal, it is reached

• Or symbol
– Reached when for any children (1) child is an

operation; or (2) if child is a goal, it is reached

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Example

• Files have 3 attributed

– locked true when file locked

– opened true when file opened

– inuse set containing PIDs of processes that have

file open

• Functions

– read_access(p, f) true if process p can read file f

– empty(s) true if s has no elements

– random returns an argument chosen at random

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Operations

(* lock file if not locked and not opened; otherwise return false *)

procedure Lockfile(f: file): boolean;

begin

if not f.locked and empty(f.inuse) then

f.locked := true;

end;

(* unlock the file *)

procedure Unlockfile(f: file);

begin

if f.locked then

f.locked := false;

end;

(* say whether the file is locked *)

function Filelocked(f: file): boolean;

begin

Filelocked := f.locked;

end;

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Operations

(* open the file if it isn’t locked and the *)

(* process has the right to read the file *)

procedure Openfile(f: file);

begin

if not f.locked and read_access(process_id, f) then

(* add the process ID to the inuse set *)

f.inuse = f.inuse + process_id;

end;

(* if the process can read the file, say if the *)

(* file is open, otherwise return a value at random *)

function Fileopened(f: file): boolean;

begin

if not read_access(process_id, f) then

Fileopened := random(true, false);

else

Fileopened := not isempty(f.inuse);

end

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Step 1

inuse!locked!!return

!inuse!lockedlockedmodify

inuse
locked,

inuse
lockedlocked

locked,

inuse
reference

FileopenedOpenfileFilelockedUnlockfileLockfile

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Step 2

• Goal: locate covert storage channel that

uses some attribute

• Do this by constructing covert flow tree

– Type of goal controls construction

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Goals

• Topmost goal: attribute be modified,
modification recognized
– one child (and) with two children (modification goal

and recognition goal)

• Modification goal: operation modifies attribute
– one child (or) with one child per operation

(operation)

• Recognition goal: subject recognize, infer
change in attribute
– one child (or) with two children (direct recognition

goal, indirect recognition goal)

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Goals

• Direct recognition goal: operation accesses attribute
– one child (or) with one child per operation (operation); if

none, return failure

• Inferred recognition goal: modification inferred on
basis of one or more other attributes
– one child (or) with one child inferred-via per operation that

references some attribute and modifies some attribute

• Inferred-via goal: value of attribute be inferred via
operation and recognition of new state of attribute
resulting from that operation
– one child (and) with two children (operation for operation

used to draw inference, recognize-new-state goal)

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Goals

• Recognize-new-state goal: value of attribute
be inferred via operation and recognition of
new state of attribute resulting from that
operation
– Latter requires recognition goal for attribute

– one child (or) with one recognition goal symbol
child for each attribute enabling inference of
modification of attribute in question

• Construction ends when all paths terminate in
either operation symbol or failure symbol

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Example: Tree for locked

• Goal state “Covert
storage channel via
attribute locked”
– and node is child

– Modification goal is
“modification of
locked”

– Recognition goal is
“recognition of
locked”

Covert storage channel
via attribute locked

Modification of
attribute locked

Recognition of
attribute locked

•

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Example: Modification goal

• Functions Lockfile,
Unlockfile modify
locked attribute
– They make up the

children

Modification of

attribute locked

Lockfile Unlockfile

+

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

Example: Recognition Goal

• Direct branch:
Filelocked returns
value of locked

• Indirect branch:
does any function
modify some
attribute other than
locked after
referencing locked
– Attribute inuse

Recognition of
attribute locked

+

Direct recognition of
attribute locked

+

Filelocked

Indirect recognition of
attribute locked

+

Infer attribute locked
via attribute inuse

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Example: Inferred Attribute

• Openfile uses

locked to modify

inuse

– and node with

recognition of

attribute inuse

• Requires

recognizing

modification of inuse

Openfile

Infer attribute locked
via attribute inuse

•

Recognition of
attribute inuse

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Example: Recognition

• Direct recognition of

change: Fileopened

• Indirect recognition

of change: nothing

Recognition of
attribute inuse

+

Direct recognition of
attribute inuse

Indirect recognition of
attribute inuse

+

Fileopened

+

FALSE

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

M
o
d
if

ic
at

io
n
 o

f
at

tr
ib

u
te

 l
o
ck
ed

L
o
ck
fi
le

U
n
lo
ck
fi
le

+

R
ec

o
g
n
it

io
n
 o

f
at

tr
ib

u
te

 l
o
ck
ed

+

D
ir

ec
t

re
co

g
n
it

io
n
 o

f
at

tr
ib

u
te

 l
o
ck
ed

+

F
il
el
o
ck
ed

In
d
ir

ec
t

re
co

g
n
it

io
n
 o

f
at

tr
ib

u
te

 l
o
ck
ed

+

In
fe

r
at

tr
ib

u
te

 l
o
ck
ed

v
ia

 a
tt

ri
b
u
te

 i
n
u
se

O
p
en
fi
le

•

R
ec

o
g
n
it

io
n
 o

f
at

tr
ib

u
te

 i
n
u
se

+

D
ir

ec
t

re
co

g
n
it

io
n
 o

f
at

tr
ib

u
te

 i
n
u
se

In
d
ir

ec
t

re
co

g
n
it

io
n
 o

f
at

tr
ib

u
te

 i
n
u
se

+

F
il
eo
p
en
ed

+

FA
L

S
E

C
o
v
er

t
st

o
ra

g
e

ch
an

n
el

v
ia

 a
tt

ri
b
u
te

 l
o
ck
ed

•

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Next Step

• First list: sequences of operations

modifying attribute

• Second list: sequences of operations

recognizing modifications in attribute

• Information can flow along channel of

sequence from first list followed by

sequence from second list

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Example

• List 1 = ((Lockfile) , (Unlockfile))

• List 2 = ((Filelocked), (Openfile ,
Fileopened))

• So 4 channels (sequences):

– Lockfile, Filelocked

– Unlockfile, Filelocked

– Lockfile, Openfile, Fileopened

– Unlockfile, Openfile, Fileopened

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

Example Attack

• High process sending information to Low

process by locking, unlocking file:

– First two channels are direct covert storage

channel

– Last two indirect covert storage channels

• High process locks file (1 bit) or unlocks file (0 bit)

• Low process tries to open file

• Low process uses Fileopened to see if it worked; if so, 0

bit; if not, 1 bit

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Summary

• Compared to SRMM
– Both based on examining shared resources for

reference, modification

– Covert flow trees identifies explicit sequences of
operations that cause information flow; SRM
identifies channels

• How it did:
– Covert flow trees found sequences of operations

for all SRM, noninterference channels on SAT,
and 1 more channel/sequence the other methods
missed

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 33

Analysis

• Goal: determine at what rate
information can be transmitted over a
covert channel

– Measured in “capacity” (bits) per unit time
or per number of trials

– Assumes security policy considers covert
channel a serious problem

– May or may not be true; depends entirely
on threat model and operational issues

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 34

Noninterference and Capacity

• Alice sends information to Bob

• Random variables:

– W represents inputs to machine

– A represents inputs from Alice

– V represents inputs not from Alice

– B represents all possible outputs to Bob

• I(A;B) amount of information transmitted
over covert channel

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 35

When Is Capacity 0?

Theorem: If A, V independent and A

noninterfering with B, then I(A;B) = 0

Proof: Sufficient to show A, B independent, or

p(A=a,B=b) = p(A=a)p(B=b)

In general,

p(A=a,B=b) = "Vp(A=a,B=b,V=v)

A noninterfering with B: deleting that part of

input making up a will not change output b.

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 36

Proof

So only need to consider values of B that

could result from values of V; so

p(A=a,B=b) = "V p(A=a,V=v)p(B=b|V=v)

As V and A are independent,

p(A=a,B=b) = "V p(A=a,V=V)p(B=b|V=v)

= p(A=a)("Vp(B=b|V=v)p(V=v))

= p(A=a)p(B=b)

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 37

Is Noninterference Needed?

• System has:
– 1 state bit; initially 0

– 3 inputs, IA, IB, IC
– 1 output OX

• Each input bit flips state bit
– Value of state output

• Let w be sequence of inputs corresponding to
output x(w)
– x(w) = length(w) mod 2

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 38

IA and OX

• IA not noninterfering with OX

– Delete inputs from IA, changes length of output
and hence value of x(w)

• Let:
– W represents length of input sequences

– A represents length of components of input
subsequence contributed by IA

– V represents length of components of input
subsequence not contributed by IA

• A, V independent

– X represents output state

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 39

Case 1

• If V = 0, then:

W = (A + V) mod 2 = A mod 2

• So W, I dependent

• So are A, X

• Hence I(A; X) !"0

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 40

Case 2

Let IB, IC produce inputs such that

p(V=0) = p(V=1) = 0.5

Then:

p(X=x) = p(V=x,A=0)+p(V=1–x,A=1)

By independence of A, I:

p(X=x) = p(V=x)p(A=0)+p(V=1–x)p(A=1)

So p(X=x) = 0.25+0.25 = 0.5

p(X=x|A=a)=p(X=(a+x) mod 2) = 0.5

So A and X independent, giving I(A;X) = 0

May 22, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 41

Meaning

• Covert channel capacity will be 0 if:

– Input noninterfering with output, or

– Input sequence comes from independent

sources and all possible values from at

least 1 source equiprobable

• In effect, distribution “hides” interference

