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Information Flow Analysis

• Recall compiler-based information flow

analysis

– Exception depends upon value of variable

• Covert channel, as exception (or lack of it)

communicates information about value

– Synchronization, IPC operations

• One process sends message or blocks on

receive; other process can detect this
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Source Code Analysis

• Covert channels arise when processes

can view or alter kernel variables

– So identify variables that processes can

refer to directly or view, alter indirectly
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Step 1

• Identify kernel functions, processes

– Processes are those that function at

highest level of privilege, perform actions

for ordinary users

• Not administrative processes, functions

– Administrators don’t need to leak anything;

they have privileges to do it directly
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Step 2

• Identify kernel variables accessible to
user processes; processes must:

– Control how variable is altered

– Detect that variable has been altered

• Specific criteria:

– Value of variable obtained from system call

– Calling process can detect two or more
different states of that variable
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Example

x := f(a, b); y := f(a, b);
if x = 0 then if y = 0 then

x := x + 10; z := 1;
return x; else

z := 0;
return z;

x directly visible as returned directly

y indirectly visible as not returned directly,

but its value can be deduced from z,

which is returned
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Caveats

• Find all data flows through kernel
– Need to detect all data and functional

dependencies

• Record or structure
– Consider each of its elements

• Array of structures
– Consider each element of each structure, and

array as a whole

• Pointers must be included
– When point to variables in question
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Step 3

• Analyze variables looking for covert channels

– Method similar to that of deriving SRM

– Results in terms of operations that alter, view

variables

• Only alter or only view: ignore operation

• Covert channel may be associated with many

variables

• Variable may be associated with many covert

channels
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Application

• Analyze Secure Xenix kernel

• Found two variables involved in covert
channels

• 4 classes of generic channels identified
– One exploitable only when system failed

– One could not be eliminated without changing
semantics of regular Xenix

• Concluded that informal analysis would not
make all associations of variables, system
calls
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Use of SRMM

• Examined Secure Xenix top-level

specification

• SRM method failed to spot several

covert channels

– Not surprising, as the TLS did not specify

data structures in which covert channels

were found
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Covert Flow Trees

• Idea: model flow of information through
shared resource with tree

• Tree-structured representation of
sequence of operations that move
information from one process to another

• 5 types of nodes: goal symbols,
operation symbol, failure symbol, and
symbol, or symbol
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Goal Symbols

• Specify states that must exist for information

to flow

– Modification goal: reached when attribute modified

– Recognition goal: reached when attribute

modification is detected

– Direct recognition goal: reached when subject can

detect change of attribute by direct reference or

calling function that returns it
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Goal Symbols

– Inferred recognition goal: reached when subject

can detect change of attribute without direct

reference or calling function that returns it

– Inferred-via goal: reached when information

passed from one attribute to other attributes using

specified system call

– Recognize-new-state goal: reached when attribute

modified when information passed using the

variable is specified by inferred-via goal

May 22, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 14

Other Symbols

• Operation symbol
– Represents primitive operation

• Failure symbol
– Information cannot be sent along this path

• And symbol
– Reached when for all children (1) child is an

operation; and (2) if child is a goal, it is reached

• Or symbol
– Reached when for any children (1) child is an

operation; or (2) if child is a goal, it is reached
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Example

• Files have 3 attributed

– locked true when file locked

– opened true when file opened

– inuse set containing PIDs of processes that have

file open

• Functions

– read_access(p, f) true if process p can read file f

– empty(s) true if s has no elements

– random returns an argument chosen at random
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Operations

(* lock file if not locked and not opened; otherwise return false *)

procedure Lockfile(f: file): boolean;

begin

if not f.locked and empty(f.inuse) then

f.locked := true;

end;

(* unlock the file *)

procedure Unlockfile(f: file);

begin

if f.locked then

f.locked := false;

end;

(* say whether the file is locked *)

function Filelocked(f: file): boolean;

begin

Filelocked := f.locked;

end;
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Operations

(* open the file if it isn’t locked and the *)

(* process has the right to read the file   *)

procedure Openfile(f: file);

begin

if not f.locked and read_access(process_id, f) then

(* add the process ID to the inuse set *)

f.inuse = f.inuse + process_id;

end;

(* if the process can read the file, say if the     *)

(* file is open, otherwise return a value at random *)

function Fileopened(f: file): boolean;

begin

if not read_access(process_id, f) then

Fileopened := random(true, false);

else

Fileopened := not isempty(f.inuse);

end
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Step 1

inuse!locked!!return

!inuse!lockedlockedmodify

inuse
locked,

inuse
lockedlocked

locked,

inuse
reference

FileopenedOpenfileFilelockedUnlockfileLockfile
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Step 2

• Goal: locate covert storage channel that

uses some attribute

• Do this by constructing covert flow tree

– Type of goal controls construction
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Goals

• Topmost goal: attribute be modified,
modification recognized
– one child (and) with two children (modification goal

and recognition goal)

• Modification goal: operation modifies attribute
– one child (or) with one child per operation

(operation)

• Recognition goal: subject recognize, infer
change in attribute
– one child (or) with two children (direct recognition

goal, indirect recognition goal)
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Goals

• Direct recognition goal: operation accesses attribute
– one child (or) with one child per operation (operation); if

none, return failure

• Inferred recognition goal: modification inferred on
basis of one or more other attributes
– one child (or) with one child inferred-via per operation that

references some attribute and modifies some attribute

• Inferred-via goal: value of attribute be inferred via
operation and recognition of new state of attribute
resulting from that operation
– one child (and) with two children (operation for operation

used to draw inference, recognize-new-state goal)
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Goals

• Recognize-new-state goal: value of attribute
be inferred via operation and recognition of
new state of attribute resulting from that
operation
– Latter requires recognition goal for attribute

– one child (or) with one recognition goal symbol
child for each attribute enabling inference of
modification of attribute in question

• Construction ends when all paths terminate in
either operation symbol or failure symbol
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Example: Tree for locked

• Goal state “Covert
storage channel via
attribute locked”
– and node is child

– Modification goal is
“modification of
locked”

– Recognition goal is
“recognition of
locked”

Covert storage channel
via attribute locked

Modification of
attribute locked

Recognition of
attribute locked

•
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Example: Modification goal

• Functions Lockfile,
Unlockfile modify
locked attribute
– They make up the

children

Modification of

attribute locked

Lockfile Unlockfile

+
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Example: Recognition Goal

• Direct branch:
Filelocked returns
value of locked

• Indirect branch:
does any function
modify some
attribute other than
locked after
referencing locked
– Attribute inuse

Recognition of
attribute locked

+

Direct recognition of
attribute locked

+

Filelocked

Indirect recognition of
attribute locked

+

Infer attribute locked
via attribute inuse
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Example: Inferred Attribute

• Openfile  uses

locked to modify

inuse

– and node with

recognition of

attribute inuse

• Requires

recognizing

modification of inuse

Openfile

Infer attribute locked
via attribute inuse

•

Recognition of
attribute inuse
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Example: Recognition

• Direct recognition of

change: Fileopened

• Indirect recognition

of change: nothing

Recognition of
attribute inuse

+

Direct recognition of
attribute inuse

Indirect recognition of
attribute inuse

+

Fileopened

+

FALSE
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Next Step

• First list: sequences of operations

modifying attribute

• Second list: sequences of operations

recognizing modifications in attribute

• Information can flow along channel of

sequence from first list followed by

sequence from second list
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Example

• List 1 = ( ( Lockfile ) , ( Unlockfile ) )

• List 2 = ( ( Filelocked ), ( Openfile ,
Fileopened ) )

• So 4 channels (sequences):

– Lockfile, Filelocked

– Unlockfile, Filelocked

– Lockfile, Openfile, Fileopened

– Unlockfile, Openfile, Fileopened
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Example Attack

• High process sending information to Low

process by locking, unlocking file:

– First two channels are direct covert storage

channel

– Last two indirect covert storage channels

• High process locks file (1 bit) or unlocks file (0 bit)

• Low process tries to open file

• Low process uses Fileopened to see if it worked; if so, 0

bit; if not, 1 bit
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Summary

• Compared to SRMM
– Both based on examining shared resources for

reference, modification

– Covert flow trees identifies explicit sequences of
operations that cause information flow; SRM
identifies channels

• How it did:
– Covert flow trees found sequences of operations

for all SRM, noninterference channels on SAT,
and 1 more channel/sequence the other methods
missed
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Analysis

• Goal: determine at what rate
information can be transmitted over a
covert channel

– Measured in “capacity” (bits) per unit time
or per number of trials

– Assumes security policy considers covert
channel a serious problem

– May or may not be true; depends entirely
on threat model and operational issues
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Noninterference and Capacity

• Alice sends information to Bob

• Random variables:

– W represents inputs to machine

– A represents inputs from Alice

– V represents inputs not from Alice

– B represents all possible outputs to Bob

• I(A;B) amount of information transmitted
over covert channel
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When Is Capacity 0?

Theorem: If A, V independent and A

noninterfering with B, then I(A;B) = 0

Proof: Sufficient to show A, B independent, or

p(A=a,B=b) = p(A=a)p(B=b)

In general,

p(A=a,B=b) = "Vp(A=a,B=b,V=v)

A noninterfering with B: deleting that part of

input making up a will not change output b.
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Proof

So only need to consider values of B that

could result from values of V; so

p(A=a,B=b) = "V p(A=a,V=v)p(B=b|V=v)

As V and A are independent,

p(A=a,B=b) = "V p(A=a,V=V)p(B=b|V=v)

= p(A=a)("Vp(B=b|V=v)p(V=v))

= p(A=a)p(B=b)
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Is Noninterference Needed?

• System has:
– 1 state bit; initially 0

– 3 inputs, IA, IB, IC
– 1 output OX

• Each input bit flips state bit
– Value of state output

• Let w be sequence of inputs corresponding to
output x(w)
– x(w) = length(w) mod 2
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IA and OX

• IA not noninterfering with OX

– Delete inputs from IA, changes length of output
and hence value of x(w)

• Let:
– W represents length of input sequences

– A represents length of components of input
subsequence contributed by IA

– V represents length of components of input
subsequence not contributed by IA

• A, V independent

– X represents output state
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Case 1

• If V = 0, then:

W = (A + V) mod 2 = A mod 2

• So W, I dependent

• So are A, X

• Hence I(A; X) !"0
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Case 2

Let IB, IC produce inputs such that

p(V=0) = p(V=1) = 0.5

Then:

p(X=x) = p(V=x,A=0)+p(V=1–x,A=1)

By independence of A, I:

p(X=x) = p(V=x)p(A=0)+p(V=1–x)p(A=1)

So p(X=x) = 0.25+0.25 = 0.5

p(X=x|A=a)=p(X=(a+x) mod 2) = 0.5

So A and X independent, giving I(A;X) = 0
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Meaning

• Covert channel capacity will be 0 if:

– Input noninterfering with output, or

– Input sequence comes from independent

sources and all possible values from at

least 1 source equiprobable

• In effect, distribution “hides” interference


