ECS 289M Lecture 25

May 31, 2006

Life Cycle

- Conception
- Manufacture
- Deployment
- Fielded Product Life

Conception

- Idea
 - Decisions to pursue it
- Proof of concept
 - See if idea has merit
- High-level requirements analysis
 - What does "secure" mean for this concept?
 - Is it possible for this concept to meet this meaning of security?
 - Is the organization willing to support the additional resources required to make this concept meet this meaning of security?

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 3

Manufacture

- Develop detailed plans for each group involved
 - May depend on use; internal product requires no sales
- · Implement the plans to create entity
 - Includes decisions whether to proceed, for example due to market needs

Deployment

- Delivery
 - Assure that correct masters are delivered to production and protected
 - Distribute to customers, sales organizations
- Installation and configuration
 - Ensure product works appropriately for specific environment into which it is installed
 - Service people know security procedures

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 5

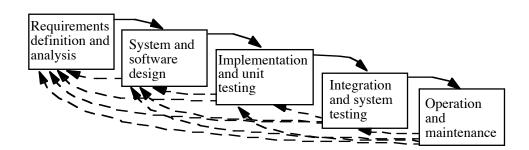
Fielded Product Life

- · Routine maintenance, patching
 - Responsibility of engineering in small organizations
 - Responsibility may be in different group than one that manufactures product
- Customer service, support organizations
- Retirement or decommission of product

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Waterfall Life Cycle Model


- Requirements definition and analysis
 - Functional and non-functional
 - General (for customer), specifications
- System and software design
- Implementation and unit testing
- Integration and system testing
- Operation and maintenance

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 7

Relationship of Stages

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Models

- Exploratory programming
 - Develop working system quickly
 - Used when detailed requirements specification cannot be formulated in advance, and adequacy is goal
 - No requirements or design specification, so low assurance
- Prototyping
 - Objective is to establish system requirements
 - Future iterations (after first) allow assurance techniques

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 9

Models

- Formal transformation
 - Create formal specification
 - Translate it into program using correctness-preserving transformations
 - Very conducive to assurance methods
- System assembly from reusable components
 - Depends on whether components are trusted
 - Must assure connections, composition as well
 - Very complex, difficult to assure

Models

- Extreme programming
 - Rapid prototyping and "best practices"
 - Project driven by business decisions
 - Requirements open until project complete
 - Programmers work in teams
 - Components tested, integrated several times a day
 - Objective is to get system into production as quickly as possible, then enhance it
 - Evidence adduced after development needed for assurance

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 11

Threats and Goals

- Threat is a danger that can lead to undesirable consequences
- · Vulnerability is a weakness allowing a threat to occur
- · Each identified threat requires countermeasure
 - Unauthorized people using system mitigated by requiring identification and authentication
- Often single countermeasure addresses multiple threats

Architecture

- Where do security enforcement mechanisms go?
 - Focus of control on operations or data?
 - · Operating system: typically on data
 - · Applications: typically on operations
 - Centralized or distributed enforcement mechanisms?
 - · Centralized: called by routines
 - Distributed: spread across several routines

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 13

Layered Architecture

- Security mechanisms at any layer
 - Example: 4 layers in architecture
 - · Application layer: user tasks
 - · Services layer: services in support of applications
 - · Operating system layer: the kernel
 - · Hardware layer: firmware and hardware proper
- Where to put security services?
 - Early decision: which layer to put security service in

Security Services in Layers

- Choose best layer
 - User actions: probably at applications layer
 - Erasing data in freed disk blocks: OS layer
- Determine supporting services at lower layers
 - Security mechanism at application layer needs support in all 3 lower layers
- May not be possible
 - Application may require new service at OS layer; but OS layer services may be set up and no new ones can be added

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 15

Security: Built In or Add On?

- Think of security as you do performance
 - You don't build a system, then add in performance later
 - Can "tweak" system to improve performance a little
 - Much more effective to change fundamental algorithms, design
- You need to design it in
 - Otherwise, system lacks fundamental and structural concepts for high assurance

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Reference Validation Mechanism

- Reference monitor is access control concept of an abstract machine that mediates all accesses to objects by subjects
- Reference validation mechanism (RVM) is an implementation of the reference monitor concept.
 - Tamperproof
 - Complete (always invoked and can never be bypassed)
 - Simple (small enough to be subject to analysis and testing, the completeness of which can be assured)
 - · Last engenders trust by providing assurance of correctness

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 17

Examples

- Security kernel combines hardware and software to implement reference monitor
- Trusted computing base (TCB) is all protection mechanisms within a system responsible for enforcing security policy
 - Includes hardware and software
 - Generalizes notion of security kernel

Adding On Security

- Key to problem: analysis and testing
- Designing in mechanisms allow assurance at all levels
 - Too many features adds complexity, complicates analysis
- Adding in mechanisms makes assurance hard
 - Gap in abstraction from requirements to design may prevent complete requirements testing
 - May be spread throughout system (analysis hard)
 - Assurance may be limited to test results

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 19

Example

- 2 AT&T products
 - Add mandatory controls to UNIX system
 - SV/MLS
 - Add MAC to UNIX System V Release 3.2
 - SVR4.1ES
 - Re-architect UNIX system to support MAC

Comparison

- Architecting of System
 - SV/MLS: used existing kernel modular structure; no implementation of least privilege
 - SVR4.1ES: restructured kernel to make it highly modular and incorporated least privilege

May 31, 2006

ECS 289M, Foundations of Computer and Information Security

Slide 21

Comparison

- File Attributes (inodes)
 - SV/MLS added separate table for MAC labels, DAC permissions
 - · UNIX inodes have no space for labels; pointer to table added
 - · Problem: 2 accesses needed to check permissions
 - · Problem: possible inconsistency when permissions changed
 - · Corrupted table causes corrupted permissions
 - SVR4.1ES defined new inode structure
 - · Included MAC labels
 - · Only 1 access needed to check permissions

Requirements Assurance

- Specification describes of characteristics of computer system or program
- Security specification specifies desired security properties
- Must be clear, complete, unambiguous
 - Something like "meets C2 security requirements" not good: what are those requirements (actually, 34 of them!)

May 31, 2006

ECS 289M, Foundations of Computer and Information Security