
MHI 289I, Programming in Health Informatics Winter Quarter 2018

Top-Down Programming Example: Rock, Paper, Scissors

Step #1: Goal and General Algorithm Idea
Goal: write a game to play “rock, paper, scissors”

The user chooses one of these, the computer chooses the other
• If the pair is “rock, paper”, the paper wins
• If the pair is “scissors, paper”, the scissors wins
• If the pair is “scissors, rock”, the rock wins

Specification: user enters selection of rock, paper, scissors
Program prints computer’s selection, who wins
At end, computer prints number of games human won and it won

High-level design:
initialize score
loop

ask user for choice
if quit, exit loop
computer selects one
select winner and increment win count

endloop
print number of games user won, computer won, ties

Step #2: Data Representation and Program Structure
Part #1: Data

Represent the rock, paper, scissors using strings: “rock”, “paper”, “scissors” (sequence things)
Represent commands as strings as above, plus “quit” (sequence cmdlist)
Store the scores in a dictionary with keys “user”, “computer”, “tie” and integer values (initially set to 0)

Part #2: Functions
• get user input – getuser()
• get computer choice – getcomp()
• determine winner – whowins()

Part #3: Refine algorithm
We can now put this into Python

while True:
userchoice = getuser();
if (userchoice == quit):

break\\
compchoice = getcomp();
winner = whowins(userchoice , compchoice)
score[winner] += 1

print "You won", score[‘‘user’’], "game(s), the computer won",
print score[‘‘computer’’], "game(s), and you two tied", score[‘‘tie’’], "game(s)"

Version of March 14, 2018 at 11:38am Page 1 of 3

MHI 289I, Programming in Health Informatics Winter Quarter 2018

Step #3: Figure out who wins
Represent (ob ject1, ob ject2) where ob ject1 beats ob ject2 as list of tuples, winlist. To see if user won, see if the
(user-chosen object, computer-chosen object) tuple is in that list.

This leads to rps-prog1.py:

def whowins(user , comp):
if user == comp:

win = "tie"
elif (user , comp) in winlist:

win = "user"
else:

win = "computer"
return win

Step #4: Get computer choice
Given the three objects in the sequence things, choose randomly.

This leads to rps-prog2.py:

def getcomp():
pick = random.choice(things)
print("Computer picks", pick)
return pick

Step #5: Get user input
Loop until you get a valid input. If the user types an end of file (control-d) or an interrupt (control-c), act as though
the user typed “quit”; report any other exceptions and then act as though the user typed “quit”.

This leads to rps-prog3.py:

def getuser():
while True:

try:
n = input("Human: enter rock , paper , scissors , quit: ")

except (EOFError , KeyboardInterrupt):
n = "quit"
break

except Exception as msg:
print("Unknown exception:", msg, "-- quitting")
n = "quit"
break

*** check input ***
return n

To check input, we need to be sure it’s a valid command, so see if it’s in cmdlist:

if n not in cmdlist:
print("Bad input; try again")

else:
break

Put these together to get the user input routine.

Step #6: Make it human-friendly
The program now works correctly, but it’s rather unfriendly— the “game(s)” should be “game” or “games” as appro-
priate, and it should tell the user who wins each round. So we ned to add something to the while True loop in the
main routine, and change the print statements at the end.

Version of March 14, 2018 at 11:38am Page 2 of 3

MHI 289I, Programming in Health Informatics Winter Quarter 2018

Telling the user who wins is straightforward. Simply put in an if statement at the end of the loop. One tricky point
is that there are actually four conditions: winner can take on three known values (“user”, “computer”, and “tie”), and
any other unknown value. It should never do the latter, but just in case, we program defensively and put a special case
in to catch that. The resulting code is:

if winner == "user":
print "You win"

elif winner == "computer":
print "Computer wins"

elif winner == "tie":
print "Tie"

else:
print "*** INTERNAL ERROR *** winner is", winner
break

Next, the program should distinguish between 1 “game” and any other number of “games” (note you say “0 games”
in English). Again, we use an if statement to handle it. Both the computer’s number of games, the user’s number of
game, and the number of tie games have to be handled.

print "You won",
if score["user"] == 1:

print "1 game , the computer won",
else:

print score["user"], "games , the computer won",
if score["computer"] == 1:

print "1 game , and you two tied",
else:

print score["computer"], "games , and you two tied",
if score["tie"] == 1:

print "1 game."
else:

print score["tie"], "games."

The resulting program is rps-prog3.py.

Version of March 14, 2018 at 11:38am Page 3 of 3

